Optical pumping of molecules provides unique opportunities for control of chemical reactions at a wide range of rotational energies. This work reports a chemical reaction with extreme rotational excitation of a reactant and its kinetic characterization. We investigate the chemical reactivity for the hydrogen abstraction reaction SiO + H → SiOH + H in an ion trap.
View Article and Find Full Text PDFImproved optical control of molecular quantum states promises new applications including chemistry in the quantum regime, precision tests of fundamental physics, and quantum information processing. While much work has sought to prepare ground state molecules, excited states are also of interest. Here, we demonstrate a broadband optical approach to pump trapped SiO molecules into pure super rotor ensembles maintained for many minutes.
View Article and Find Full Text PDFWe propose an optical pumping scheme to prepare trapped AlH+ molecules in a pure state, the stretched hyperfine state of the rovibronic ground manifold |X2Σ+, v = 0, N = 0 . Our scheme utilizes linearly-polarized and circularly-polarized fields of a broadband pulsed laser to cool the rotational degree of freedom and drive the population to the hyperfine state, respectively. We simulate the population dynamics by solving a representative system of rate equations that accounts for the laser fields, blackbody radiation, and spontaneous emission.
View Article and Find Full Text PDFWe demonstrate rotational cooling of the silicon monoxide cation via optical pumping by a spectrally filtered broadband laser. Compared with diatomic hydrides, SiO^{+} is more challenging to cool because of its smaller rotational interval. However, the rotational level spacing and the large dipole moment of SiO^{+} allows for direct manipulation by microwaves, and the absence of hyperfine structure in its dominant isotopologue greatly reduces demands for pure quantum state preparation.
View Article and Find Full Text PDFThe Libbrecht-Hall circuit is a well-known, low-noise current driver for narrow-linewidth diode lasers. An important feature of the circuit is a current limit to protect the laser diode. As the current approaches the maximum limit, however, the noise in the laser current increases dramatically.
View Article and Find Full Text PDFEur J Mass Spectrom (Chichester)
March 2016
We demonstrate a spatial-imaging thermometry technique for ions in a one-dimensional Coulomb crystal by relating their imaged spatial extent along the linear radiofrequency ion trap axis to normal modes of vibration of coupled oscillators in a harmonic potential. We also use the thermal spatial spread of "bright" ions in the case of a two-species mixed chain to measure the center-of-mass resonance frequency of the entire chain and infer the molecular composition of the co-trapped "dark" ions. These non-destructive techniques create new possibilities for better understanding of sympathetic cooling in mixed-ion chains, improving few-ion mass spectrometry, and trapped-ion thermometry without requiring a scan of Doppler cooling parameters.
View Article and Find Full Text PDFLaser cycling of resonances can remove entropy from a system via spontaneously emitted photons, with electronic resonances providing the fastest cooling timescales because of their rapid spontaneous relaxation. Although atoms are routinely laser-cooled, even simple molecules pose two interrelated challenges for cooling: every populated rotational-vibrational state requires a different laser frequency, and electronic relaxation generally excites vibrations. Here we cool trapped AlH(+) molecules to their ground rotational-vibrational quantum state using an electronically exciting broadband laser to simultaneously drive cooling resonances from many different rotational levels.
View Article and Find Full Text PDF