Publications by authors named "Brian C McDonald"

Article Synopsis
  • The decline in vehicle emissions highlights the increasing role of Volatile Organic Compounds (VOCs) from Volatile Chemical Products (VCP), but their complex chemistry poses challenges for accurate modeling.
  • Researchers developed a new chemical mechanism called RACM2B-VCP to better represent VOC emissions from VCP sources, specifically in urban settings like Los Angeles.
  • Model evaluations show promising results, indicating that over 50% of anthropogenic VOC reactivity and ozone enhancement in the area is linked to VCP emissions, despite some remaining discrepancies in the model's overall VOC reactivity predictions.
View Article and Find Full Text PDF

Prior studies have shown that people of color (POC) in the United States are exposed to higher levels of pollution than non-Hispanic White people. We show that the city of Denver, Colorado, displays similar race- and ethnicity-based air pollution disparities by using a combination of high-resolution satellite data, air pollution modeling, historical demographic information, and areal apportionment techniques. TROPOMI NO columns and modeled PM concentrations from 2019 are higher in communities subject to redlining.

View Article and Find Full Text PDF

The COVID-19 stay-at-home orders issued in the United States caused significant reductions in traffic and economic activities. To understand the pandemic's perturbations on US emissions and impacts on urban air quality, we developed near-real-time bottom-up emission inventories based on publicly available energy and economic datasets, simulated the emission changes in a chemical transport model, and evaluated air quality impacts against various observations. The COVID-19 pandemic affected US emissions across broad-based energy and economic sectors and the impacts persisted to 2021.

View Article and Find Full Text PDF

The extent to which emission control technologies and policies have reduced anthropogenic NO emissions from motor vehicles is large but uncertain. We evaluate a fuel-based emission inventory for southern California during the June 2021 period, coinciding with the Re-Evaluating the Chemistry of Air Pollutants in CAlifornia (RECAP-CA) field campaign. A modified version of the Fuel-based Inventory of Vehicle Emissions (FIVE) is presented, incorporating 1.

View Article and Find Full Text PDF
Article Synopsis
  • Los Angeles experiences significant air pollution from ozone and particulate matter, which hasn't improved much over the last ten years despite reduced emissions from vehicles.
  • Recent airborne measurements revealed a complex mix of volatile organic compounds (VOCs) in the area, with ethanol and terpenoids being the most prevalent sources.
  • Comparing these measurements with existing emission inventories highlighted inconsistencies in the data, especially concerning biogenic and volatile chemical product emissions, while transportation-related VOCs showed better alignment.
View Article and Find Full Text PDF

Volatile chemical products (VCP) are an increasingly important source of hydrocarbon and oxygenated volatile organic compound (OVOC) emissions to the atmosphere, and these emissions are likely to play an important role as anthropogenic precursors for secondary organic aerosol (SOA). While the SOA from VCP hydrocarbons is often accounted for in models, the formation, evolution, and properties of SOA from VCP OVOCs remain uncertain. We use environmental chamber data and a kinetic model to develop SOA parameters for 10 OVOCs representing glycols, glycol ethers, esters, oxygenated aromatics, and amines.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals high levels of hydrochloric acid (HCl) and halogens (Cl, Br, and BrCl) in an industrial plume near the Great Salt Lake, Utah, highlighting a significant environmental concern.
  • Complete oxygen depletion was linked to the production of halogen radicals, correlating with reported emissions from nearby facilities for chlorine and HCl, but bromine levels were estimated based on unreported inventory data.
  • A photochemical model demonstrated that bromine radicals were the primary cause of rapid oxygen depletion, and including halogen emissions in environmental models indicated a 10%-25% increase in particulate matter in the Great Salt Lake Basin, exacerbating air quality problems in the region.
View Article and Find Full Text PDF

Increasing trends in biomass burning emissions significantly impact air quality in North America. Enhanced mixing ratios of ozone (O) in urban areas during smoke-impacted periods occur through transport of O produced within the smoke or through mixing of pyrogenic volatile organic compounds (PVOCs) with urban nitrogen oxides (NO = NO + NO) to enhance local O production. Here, we analyze a set of detailed chemical measurements, including carbon monoxide (CO), NO, and speciated volatile organic compounds (VOCs), to evaluate the effects of smoke transported from relatively local and long-range fires on O measured at a site in Boulder, Colorado, during summer 2020.

View Article and Find Full Text PDF

Volatile chemical products (VCPs) and other non-combustion-related sources have become important for urban air quality, and bottom-up calculations report emissions of a variety of functionalized compounds that remain understudied and uncertain in emissions estimates. Using a new instrumental configuration, we present online measurements of oxygenated organic compounds in a U.S.

View Article and Find Full Text PDF

Urban air pollution disproportionately harms communities of color and low-income communities in the U.S. Intraurban nitrogen dioxide (NO) inequalities can be observed from space using the TROPOspheric Monitoring Instrument (TROPOMI).

View Article and Find Full Text PDF

We analyze airborne measurements of atmospheric CO concentration from 70 flights conducted over six years (2015-2020) using an inverse model to quantify the CO emissions from the Washington, DC, and Baltimore metropolitan areas. We found that CO emissions have been declining in the area at a rate of ≈-4.5 % a since 2015 or ≈-3.

View Article and Find Full Text PDF

There have only been a few wintertime studies of heavy-duty vehicle (HDV) NO emissions in the United States, and while they have observed increased emissions, fleet characterization to identify the cause has been lacking. We have collected wintertime measurements of NO emission factors from 1591 HDVs at a Utah Port of Entry in December 2020 that includes individual vehicle identification. In general, NO emission factors for 2011 and newer chassis model year HDV are significantly higher than those for 2017 spring measurements from California.

View Article and Find Full Text PDF

Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density.

View Article and Find Full Text PDF

We present an updated fuel-based oil and gas (FOG) inventory with estimates of nitrogen oxide (NO) emissions from oil and natural gas production in the contiguous US (CONUS). We compare the FOG inventory with aircraft-derived ("top-down") emissions for NO over footprints that account for ∼25% of US oil and natural gas production. Across CONUS, we find that the bottom-up FOG inventory combined with other anthropogenic emissions is on average within ∼10% of top-down aircraft-derived NO emissions.

View Article and Find Full Text PDF

On-road vehicles continue to be a major source of nitrogen oxide (NO) emissions in the United States and in other countries around the world. The goal of this study is to compare and evaluate emission inventories and long-term trends in vehicular NO emissions. Taxable fuel sales data and in-use measurements of emission factors are combined to generate fuel-based NO emission inventories for California and the US over the period 1990-2020.

View Article and Find Full Text PDF

Despite decades of declining air pollution, urban U.S. areas are still affected by summertime ozone and wintertime particulate matter exceedance events.

View Article and Find Full Text PDF

With traffic emissions of volatile organic compounds (VOCs) decreasing rapidly over the last decades, the contributions of the emissions from other source categories, such as volatile chemical products (VCPs), have become more apparent in urban air. In this work, in situ measurements of various VOCs are reported for New York City, Pittsburgh, Chicago, and Denver. The magnitude of different emission sources relative to traffic is determined by measuring the urban enhancement of individual compounds relative to the enhancement of benzene, a known tracer of fossil fuel in the United States.

View Article and Find Full Text PDF

Consumer, industrial, and commercial product usage is a source of exposure to potentially hazardous chemicals. In addition, cleaning agents, personal care products, coatings, and other volatile chemical products (VCPs), evaporate and react in the atmosphere producing secondary pollutants. Here, we show high air emissions from VCP usage (≥ 14 kg person yr, at least 1.

View Article and Find Full Text PDF

Houston, Texas is a major U.S. urban and industrial area where poor air quality is unevenly distributed and a disproportionate share is located in low-income, non-white, and Hispanic neighborhoods.

View Article and Find Full Text PDF

Mobile sampling studies have revealed enhanced levels of secondary organic aerosol (SOA) in source-rich urban environments. While these enhancements can be from rapidly reacting vehicular emissions, it was recently hypothesized that nontraditional emissions (volatile chemical products and upstream emissions) are emerging as important sources of urban SOA. We tested this hypothesis by using gas and aerosol mass spectrometry coupled with an oxidation flow reactor (OFR) to characterize pollution levels and SOA potentials in environments influenced by traditional emissions (vehicular, biogenic), and nontraditional emissions (e.

View Article and Find Full Text PDF

In this study, we develop an alternative Fuel-based Oil and Gas inventory (FOG) of nitrogen oxides (NO ) from oil and gas production using publicly available fuel use records and emission factors reported in the literature. FOG is compared with the Environmental Protection Agency's 2014 National Emissions Inventory (NEI) and with new top-down estimates of NO emissions derived from aircraft and ground-based field measurement campaigns. Compared to our top-down estimates derived in four oil and gas basins (Uinta, UT, Haynesville, TX/LA, Marcellus, PA, and Fayetteville, AR), the NEI overestimates NO by over a factor of 2 in three out of four basins, while FOG is generally consistent with atmospheric observations.

View Article and Find Full Text PDF

Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios.

View Article and Find Full Text PDF

Recent studies suggest overestimates in current U.S. emission inventories of nitrogen oxides (NO = NO + NO).

View Article and Find Full Text PDF

Ground and satellite observations show that air pollution regulations in the United States (US) have resulted in substantial reductions in emissions and corresponding improvements in air quality over the last several decades. However, large uncertainties remain in evaluating how recent regulations affect different emission sectors and pollutant trends. Here we show a significant slowdown in decreasing US emissions of nitrogen oxides (NO ) and carbon monoxide (CO) for 2011-2015 using satellite and surface measurements.

View Article and Find Full Text PDF

Decamethylcyclopentasiloxane (D) is a cyclic volatile methyl siloxane (cVMS) that is widely used in consumer products and commonly observed in urban air. This study quantifies the ambient mixing ratios of D from ground sites in two North American cities (Boulder, CO, USA, and Toronto, ON, CA). From these data, we estimate the diurnal emission profile of D in Boulder, CO.

View Article and Find Full Text PDF