Newborn screening is designed for presymptomatic identification of serious conditions with effective early interventions. Clinical laboratories must perform prospective pilot studies to ensure that the analytical performance and workflow for a given screening test are appropriate. We assessed the potential to screen newborns for fragile X syndrome, a monogenic neurodevelopmental disorder, by establishing a customized, high-throughput PCR and analysis software system designed to detect fragile X mental retardation 1 gene repeat expansions from dried blood spots (DBSs).
View Article and Find Full Text PDFWe developed and characterized a next-generation sequencing (NGS) technology for streamlined analysis of DNA and RNA using low-input, low-quality cancer specimens. A single-workflow, targeted NGS panel for non-small cell lung cancer (NSCLC) was designed covering 135 RNA and 55 DNA disease-relevant targets. This multiomic panel was used to assess 219 formalin-fixed paraffin-embedded NSCLC surgical resections and core needle biopsies.
View Article and Find Full Text PDFLung cancer accounts for approximately 14% of all newly diagnosed cancers and is the leading cause of cancer-related deaths. Chimeric RNA resulting from gene fusions (RNA fusions) and other RNA splicing errors are driver events and clinically addressable targets for non-small cell lung cancer (NSCLC). The reliable assessment of these RNA markers by next-generation sequencing requires integrated reagents, protocols, and interpretive software that can harmonize procedures and ensure consistent results across laboratories.
View Article and Find Full Text PDFMultiple molecular markers contribute to the pathogenesis of thyroid cancer and can provide valuable information to improve disease diagnosis and patient management. We performed a comprehensive evaluation of miRNA gene expression in diverse thyroid lesions (n = 534) and developed predictive models for the classification of thyroid nodules, alone or in combination with genotyping. Expression profiling by reverse transcription-quantitative polymerase chain reaction in surgical specimens (n = 257) identified specific miRNAs differentially expressed in 17 histopathological categories.
View Article and Find Full Text PDFAll next-generation sequencing (NGS) procedures include assays performed at the laboratory bench ("wet bench") and data analyses conducted using bioinformatics pipelines ("dry bench"). Both elements are essential to produce accurate and reliable results, which are particularly critical for clinical laboratories. Targeted NGS technologies have increasingly found favor in oncology applications to help advance precision medicine objectives, yet the methods often involve disconnected and variable wet and dry bench workflows and uncoordinated reagent sets.
View Article and Find Full Text PDFUnlabelled: Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen that kills over 600,000 people annually. Here, we report integrated computational and experimental investigations of the role and mechanisms of transcriptional regulation in cryptococcal infection. Major cryptococcal virulence traits include melanin production and the development of a large polysaccharide capsule upon host entry; shed capsule polysaccharides also impair host defenses.
View Article and Find Full Text PDFKey steps in understanding a biological process include identifying genes that are involved and determining how they are regulated. We developed a novel method for identifying transcription factors (TFs) involved in a specific process and used it to map regulation of the key virulence factor of a deadly fungus-its capsule. The map, built from expression profiles of 41 TF mutants, includes 20 TFs not previously known to regulate virulence attributes.
View Article and Find Full Text PDFThe pathogenic fungus Cryptococcus neoformans synthesizes a complex family of glycosylinositolphosphoceramide (GIPC) structures. These glycosphingolipids (GSLs) consist of mannosylinositolphosphoceramide (MIPC) extended by β1-6-linked galactose, a unique structure that has to date only been identified in basidiomycetes. Further extension by up to five mannose residues and a branching xylose has been described.
View Article and Find Full Text PDFA critical step in understanding how a genome functions is determining which transcription factors (TFs) regulate each gene. Accordingly, extensive effort has been devoted to mapping TF networks. In Saccharomyces cerevisiae, protein-DNA interactions have been identified for most TFs by ChIP-chip, and expression profiling has been done on strains deleted for most TFs.
View Article and Find Full Text PDFDICER1 is essential for the generation of mature miRNAs and other short noncoding RNAs. Several lines of investigation implicate DICER1 as a tumor suppressor. Reduced DICER1 levels and changes in miRNA abundance have been associated with aggressive tumor phenotypes.
View Article and Find Full Text PDFCryptococcus neoformans is an opportunistic fungal pathogen that causes serious human disease in immunocompromised populations. Its polysaccharide capsule is a key virulence factor which is regulated in response to growth conditions, becoming enlarged in the context of infection. We used microarray analysis of cells stimulated to form capsule over a range of growth conditions to identify a transcriptional signature associated with capsule enlargement.
View Article and Find Full Text PDFCryptococcus neoformans, a basidiomycete yeast and opportunistic pathogen, expends significant biosynthetic effort on construction of a polysaccharide capsule with a radius that may be many times that of the cell. Beyond posing a stimulating challenge in terms of defining biosynthetic pathways, the capsule is required for this yeast to cause fatal disease. This combination has focused the attention of researchers on this system.
View Article and Find Full Text PDFMotivation: Over the past decade, the prospect of inferring networks of gene regulation from high-throughput experimental data has received a great deal of attention. In contrast to the massive effort that has gone into automated deconvolution of biological networks, relatively little effort has been invested in benchmarking the proposed algorithms. The rate at which new network inference methods are being proposed far outpaces our ability to objectively evaluate and compare them.
View Article and Find Full Text PDF