Beilstein J Nanotechnol
April 2018
The effect of nanoparticle surface coating characteristics on colloidal stability in solution is a critical parameter in understanding the potential applications of nanoparticles, especially in biomedicine. Here we explored the modification of the surface of poly(ethylene glycol)-coated superparamagnetic iron oxide nanoparticles (PEG-SPIOs) with the synthetic pseudotannin polygallol via interpolymer complexation (IPC). Changes in particle size and zeta potential were indirectly assessed via differences between PEG-SPIOs and IPC-SPIOs in particle velocity and scattering intensity using near-field light scattering.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
July 2013
Alveolar epithelial cells (AECs) maintain the pulmonary blood-gas barrier integrity with gasketlike intercellular tight junctions (TJ) that are anchored internally to the actin cytoskeleton. We have previously shown that AEC monolayers stretched cyclically and equibiaxially undergo rapid magnitude- and frequency-dependent actin cytoskeletal remodeling to form perijunctional actin rings (PJARs). In this work, we show that even 10 min of stretch induced increases in the phosphorylation of Akt and LIM kinase (LIMK) and decreases in cofilin phosphorylation, suggesting that the Rac1/Akt pathway is involved in these stretch-mediated changes.
View Article and Find Full Text PDFMechanical ventilation with high tidal volumes has been associated with pulmonary alveolar flooding. Understanding the mechanisms underlying cyclic stretch-induced increases in alveolar epithelial permeability may be important in designing preventive measures for acute lung injury. In this work, we assessed whether cyclic stretch leads to the generation of reactive oxygen species in type I-like alveolar epithelial cells, which increase monolayer permeability via activation of NF-κB and extracellular signal-regulated kinase (ERK).
View Article and Find Full Text PDFVentilation of septic patients often leads to the development of edema and impaired gas exchange. We hypothesized that septic alveolar epithelial monolayers would experience stretch-induced barrier dysfunction at a lower magnitude of stretch than healthy alveolar epithelial monolayers. Alveolar epithelial cells were isolated from rats 24 hours after cecal ligation and double puncture (2CLP) or sham surgery.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2012
Alveolar epithelial cells (AECs) maintain integrity of the blood-gas barrier with actin-anchored intercellular tight junctions. Stretched type I-like AECs undergo magnitude- and frequency-dependent actin cytoskeletal remodeling into perijunctional actin rings. On the basis of published studies in human pulmonary artery endothelial cells (HPAECs), we hypothesize that RhoA activity, Rho kinase (ROCK) activity, and phosphorylation of myosin light chain II (MLC2) increase in stretched type I-like AECs in a manner that is dependent on stretch magnitude, and that RhoA, ROCK, or MLC2 activity inhibition will attenuate stretch-induced actin remodeling and preserve barrier properties.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
August 2010
Alveolar epithelial cells (AEC) maintain integrity of the blood-gas barrier with gasket-like intercellular tight junctions (TJ) that are anchored internally to the actin cytoskeleton. We hypothesize that stretch rapidly reorganizes actin (<10 min) into a perijunctional actin ring (PJAR) in a manner that is dependent on magnitude and frequency of the stretch, accompanied by spontaneous movement of actin-anchored receptors at the plasma membrane. Primary AEC monolayers were stretched biaxially to create a change in surface area (DeltaSA) of 12%, 25%, or 37% in a cyclic manner at 0.
View Article and Find Full Text PDF