Publications by authors named "Brian C Berry"

Application of shear stress has been shown to unidirectionally orient the microstructures of block copolymers and polymer blends. In the present work, we study the phase separation of a novel nanoparticle (NP)-polymer blend thin film system under shear using a soft-shear dynamic zone annealing (DZA-SS) method. The nanoparticles are densely grafted with polymer chains of chemically dissimilar composition from the matrix polymer, which induces phase separation upon thermal annealing into concentrated nanoparticle domains.

View Article and Find Full Text PDF

Unlabelled: The aging effect on P3HT:PCBM organic solar cells was investigated with camphorsulfonic doped polyaniline (PANI:CSA) or poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (

Pedot: PSS) used as the hole transport layer (HTL). The cells were encapsulated and exposed to a continuous normal atmosphere on a dark shelf and then characterized intermittently for more than two years. The photovoltaic results revealed that the cells with

Pedot: PSS HTL showed better initial results than the cells with PANI:CSA HTL.

View Article and Find Full Text PDF

A highly active tannin doped polyaniline-TiO₂ composite ammonia gas sensor was developed and the mechanism behind the gas sensing activity was reported for the first time. A tanninsulfonic acid doped polyaniline (TANIPANI)-titanium dioxide nanocomposite was synthesized by an in situ polymerization of aniline in the presence of tanninsulfonic acid and titanium dioxide nanoparticles. X-ray diffraction and thermogravimetric analysis were utilized to determine the incorporation of TiO₂ in TANIPANI matrix.

View Article and Find Full Text PDF

Directed self-assembly of cylinder forming block copolymer (c-BCP) thin films via a dynamic thermal field on multidimensional symmetric graphoepitaxy channels is reported. A synergy of dynamic thermal and static boundary fields induces highly aligned c-BCP cylinders inside the channels with a power law dependence of orientational order parameter , on trench width, ∼ d, analogous to dual-field alignment of semiconducting metals and liquid crystals on graphoepitaxy surfaces, ∼ d. Static thermal annealing of identical films in a vacuum oven for several days fails to produce comparable results.

View Article and Find Full Text PDF

It is well-known that thin films of cylinder-forming block copolymers (BCP) can exhibit a transition from a perpendicular to a parallel cylinder orientation with respect to the supporting solid substrate upon varying film thickness. We show that wave-like oscillations between these morphologies can be induced through the introduction of nanoparticles (NP) into flow-coated and annealed BCP films where the particles span the film thickness and are fixed by irreversible adsorption to the supporting substrate. We hypothesize that these novel "target" patterns arise from residual stresses that build up in the film while undergoing thermal treatment and film formation, and we support this hypothesis by showing the suppression of this type of pattern formation in films that are first thermally annealed near their glass transition T(g) to relax residual stress.

View Article and Find Full Text PDF

We investigate the effect of the ordering temperature (T) and film thickness (h(f)) on the surface morphology of flow-coated block copolymer (BCP) films of asymmetric poly(styrene-block-methyl methacrylate). Morphology transitions observed on the ordered film surface by atomic force microscopy (AFM) are associated with a perpendicular to a parallel cylinder BCP microphase orientation transition with respect to the substrate with increasing h(f). "Hybrid" surface patterns for intermediate h(f) between these limiting morphologies are correspondingly interpreted by a coexistence of these two BCP microphase orientations so that two "transitional" h(f) exist for each T.

View Article and Find Full Text PDF

We present a new method for harvesting multiple thin film specimens from polymer combinatorial libraries for transmission electron microscopy (TEM) analysis. Such methods are of interest to researchers who wish to integrate TEM measurements into a combinatorial or high-throughput experimental workflow. Our technique employs poly(acrylic acid) plugs, sequestered in an elastomer gasket, to extract a series of film patches from gradient combinatorial libraries.

View Article and Find Full Text PDF

Motivated by recent zone annealing measurements on stripe-forming block-copolymer films [B. C. Berry, Nano Lett.

View Article and Find Full Text PDF

We report measurements of rapid ordering and preferential alignment in block copolymer films zone annealed below the order-disorder transition temperature. The orientational correlation lengths measured after approximately 5 h above the glass-transition temperature ( approximately 2 microm) were an order of magnitude greater than that obtained under equivalent static annealing. The ability to rapidly process polymers with inaccessible order-disorder transition temperatures suggests zone annealing as a route toward more robust nanomanufacturing methods based on block copolymer self-assembly.

View Article and Find Full Text PDF

This article details the design, construction, and operation of flexible system that modulates light exposure for the purpose of fabricating continuous and discrete gradient combinatorial libraries. Designed for versatility, the device combines "off the shelf" components, modular accessories, and flexible computer control, so that it can be used for a variety of combinatorial research applications. Salient aspects and capabilities of the instrument are illustrated through two practical examples.

View Article and Find Full Text PDF