Phenology is the timing of life cycle events of an organism. Alterations in phenology can have profound effects on individual fitness, population growth, and community dynamics. Recent changes in climate have altered the phenology of many organisms, which may result in selection to shift phenological traits.
View Article and Find Full Text PDFLife-history traits interact in important ways. Relatively few studies, however, have explored the relationships between life-history traits in long-lived taxa such as trees. We examined patterns of energy allocation to components of reproduction and growth in three species of California oaks (Quercus spp.
View Article and Find Full Text PDFGenome sizes vary widely among species, but comprehensive explanations for the emergence of this variation have not been validated. Lynch and Conery (2003) hypothesized that genome expansion is maladaptive, and that lineages with small effective population size (N(e)) evolve larger genomes than those with large N(e) as a consequence of the lowered efficacy of natural selection in small populations. In addition, mating systems likely affect genome size evolution via effects on both N(e) and the spread of transposable elements (TEs).
View Article and Find Full Text PDFInbreeding depression is the reduction in offspring fitness associated with inbreeding and is thought to be one of the primary forces selecting against the evolution of self-fertilization. Studies suggest that most inbreeding depression is caused by the expression of recessive deleterious alleles in homozygotes whose frequency increases as a result of self-fertilization or mating among relatives. This process leads to the selective elimination of deleterious alleles such that highly selfing species may show remarkably little inbreeding depression.
View Article and Find Full Text PDFMating systems directly control the transmission of genes across generations, and understanding the diversity and distribution of mating systems is central to understanding the evolution of any group of organisms. This basic idea has been the motivation for many studies that have explored the relationships between plant mating systems and other biological and/or ecological phenomena, including a variety of floral and environmental characteristics, conspecific and pollinator densities, growth form, parity, and genetic architecture. In addition to these examples, a potentially important but poorly understood association is the relationship between plant mating systems and genome duplication, i.
View Article and Find Full Text PDF