Used in combination with immunomodulatory therapies, remyelinating therapies are a viable therapeutic approach for treating individuals with multiple sclerosis. Studies of postmortem MS brains identified greater remyelination in demyelinated cerebral cortex than in demyelinated brain white matter and implicated reactive astrocytes as an inhibitor of white matter remyelination. An animal model that recapitulates these phenotypes would benefit the development of remyelination therapeutics.
View Article and Find Full Text PDFObjective: Hippocampal demyelination, a common feature of postmortem multiple sclerosis (MS) brains, reduces neuronal gene expression and is a likely contributor to the memory impairment that is found in >40% of individuals with MS. How demyelination alters neuronal gene expression is unknown.
Methods: To explore whether loss of hippocampal myelin alters expression of neuronal microRNAs (miRNAs), we compared miRNA profiles from myelinated and demyelinated hippocampi from postmortem MS brains and performed validation studies.
Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination), which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26(MASTR)) was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP.
View Article and Find Full Text PDFIn adult skin, stem cells in the hair follicle bulge cyclically regenerate the follicle, whereas a distinct stem cell population maintains the epidermis. The degree to which all bulge cells have equal regenerative potential is not known. We found that Sonic hedgehog (Shh) from neurons signals to a population of cells in the telogen bulge marked by the Hedgehog response gene Gli1.
View Article and Find Full Text PDFBackground: The rostral telencephalic dorsal midline is an organizing center critical for the formation of the future cortex and hippocampus. While the intersection of WNTs, BMPs, and FGFs establishes boundaries within this critical center, a direct role of Shh signaling in this region remains controversial. In this paper we show that both increased and decreased Shh signaling directly affects boundary formation within the telencephalic dorsal midline.
View Article and Find Full Text PDFInduction of early pituitary progenitors is achieved through combined activities of signals from adjacent embryonic tissues. Previous studies have identified a requirement for oral ectoderm derived Sonic Hedgehog (Shh) in specification and/or proliferation of early pituitary progenitors, however how different Gli genes mediate Shh signaling to control pituitary progenitor development has not yet been determined. Here we show that Gli2, which encodes a major Gli activator, is required for proliferation of specific groups of pituitary progenitors but not for initial dorsoventral patterning.
View Article and Find Full Text PDFThe ability of neuroepithelial cells to generate a diverse array of neurons is influenced by locally secreted signals. In the spinal cord, Sonic Hedgehog (Shh) is known to induce distinct cell fates in a concentration-dependent manner by regulating the activities of the three Gli transcription factors in neural precursors. However, whether Gli-mediated Shh signaling is also required to induce different cell types in the ventral telencephalon has been controversial.
View Article and Find Full Text PDFThe identity of distinct cell types in the ventral neural tube is generally believed to be specified by sonic hedgehog (Shh) in a concentration-dependent manner. However, recent studies have questioned whether Shh is the sole signaling molecule determining ventral neuronal cell fates. Here we provide evidence that canonical Wnt signaling is involved in the generation of different cell types in the ventral spinal cord.
View Article and Find Full Text PDFAn important question is how the gradient of Hedgehog is interpreted by cells at the level of the Gli transcription factors. The full range of Gli activity and its dependence on Hh have not been determined, although the Gli2 activator and Gli3 repressor have been implicated. Using the spinal cord as a model system, we demonstrate that Gli3 can transduce Hedgehog signaling as an activator.
View Article and Find Full Text PDFThe Shh signaling pathway is required in many mammalian tissues for embryonic patterning, cell proliferation and differentiation. In addition, inappropriate activation of the pathway has been implicated in many human tumors. Based on transfection assays and gain-of-function studies in frog and mouse, the transcription factor Gli1 has been proposed to be a major mediator of Shh signaling.
View Article and Find Full Text PDF