Publications by authors named "Brian Abbey"

Automated evaluation of optical microscopy images of liquid jets, commonly used for sample delivery at X-ray free-electron lasers (XFELs), enables real-time tracking of the jet position and liquid jet hit rates, defined here as the proportion of XFEL pulses intersecting with the liquid jet. This method utilizes machine vision for preprocessing, feature extraction, segmentation and jet detection as well as tracking to extract key physical characteristics (such as the jet angle) from optical microscopy images captured during experiments. To determine the effectiveness of these tools in monitoring jet stability and enhancing sample delivery efficiency, we conducted XFEL experiments with various sample compositions (pure water, buffer and buffer with crystals), nozzle designs and jetting conditions.

View Article and Find Full Text PDF

Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches.

View Article and Find Full Text PDF

Hypothesis: The use of monoolein/water mixtures in serial crystallography experiments using high-viscosity injectors (HVI) results in significant departures from equilibrium behaviour. This is expected to include changes in phase, viscosity, and associated flow behaviour. It should be possible to detect these changes, in-situ, using a combination of polarisation and rheology characterisation techniques.

View Article and Find Full Text PDF

Many coherent imaging applications that utilize ultrafast X-ray free-electron laser (XFEL) radiation pulses are highly sensitive to fluctuations in the shot-to-shot statistical properties of the source. Understanding and modelling these fluctuations are key to successful experiment planning and necessary to maximize the potential of XFEL facilities. Current models of XFEL radiation and their shot-to-shot statistics are based on theoretical descriptions of the source and are limited in their ability to capture the shot-to-shot intensity fluctuations observed experimentally.

View Article and Find Full Text PDF
Article Synopsis
  • * Advances in diagnostic methods, including biomarkers and computer-assisted tools, could enhance precision medicine, allowing for tailored treatments based on individual patient profiles and disease characteristics.
  • * The review highlights the importance of various diagnostic techniques, like polygenic risk scores and liquid biopsies, in improving treatment decisions and outcomes for patients with advanced PCa, ultimately leading to lower mortality and better quality of life.
View Article and Find Full Text PDF
Article Synopsis
  • The European XFEL and LCLS II are powerful X-ray sources that can collect detailed data from crystals at rapid megahertz rates.
  • Researchers used these X-ray pulses to gather two complete datasets from a single lysozyme crystal in less than 1 microsecond, achieving high-resolution structures.
  • The comparison of these structures showed no radiation damage or significant changes, indicating that this multi-hit SFX technique can effectively capture fast structural changes in crystals.
View Article and Find Full Text PDF

Periodic subwavelength apertures have the ability to passively detect variations in the dielectric properties of the local sample environment through modification of the plasmon resonances associated with these structures. The resulting resonance peak can effectively provide a 'fingerprint' indicative of the dielectric properties of the medium within the near-surface region. Here we report on the use of bimodal silver-based plasmonic colour filters for molecular sensing.

View Article and Find Full Text PDF

Characterizing the properties of X-ray free-electron laser (XFEL) sources is a critical step for optimization of performance and experiment planning. The recent availability of MHz XFELs has opened up a range of new opportunities for novel experiments but also highlighted the need for systematic measurements of the source properties. Here, MHz-enabled beam imaging diagnostics developed for the SPB/SFX instrument at the European XFEL are exploited to measure the shot-to-shot intensity statistics of X-ray pulses.

View Article and Find Full Text PDF

Serial crystallography of membrane proteins often employs high-viscosity injectors (HVIs) to deliver micrometre-sized crystals to the X-ray beam. Typically, the carrier medium is a lipidic cubic phase (LCP) media, which can also be used to nucleate and grow the crystals. However, despite the fact that the LCP is widely used with HVIs, the potential impact of the injection process on the LCP structure has not been reported and hence is not yet well understood.

View Article and Find Full Text PDF

Intensity-correlation measurements allow access to nanostructural information on a range of ordered and disordered materials beyond traditional pair-correlation methods. In real space, this information can be expressed in terms of a pair-angle distribution function (PADF) which encodes three- and four-body distances and angles. To date, correlation-based techniques have not been applied to the analysis of microstructural effects, such as preferred orientation, which are typically investigated by texture analysis.

View Article and Find Full Text PDF

Continuous flow injection is a key technology for serial crystallography measurements of protein crystals suspended in the lipidic cubic phase (LCP). To date, there has been little discussion in the literature regarding the impact of the injection process itself on the structure of the lipidic phase. This is despite the fact that the phase of the injection matrix is critical for the flow properties of the stream and potentially for sample stability.

View Article and Find Full Text PDF

A peak-finding algorithm for serial crystallography (SX) data analysis based on the principle of 'robust statistics' has been developed. Methods which are statistically robust are generally more insensitive to any departures from model assumptions and are particularly effective when analysing mixtures of probability distributions. For example, these methods enable the discretization of data into a group comprising inliers ( the background noise) and another group comprising outliers ( Bragg peaks).

View Article and Find Full Text PDF

The human eye can distinguish as many as 10,000 different colours but is far less sensitive to variations in intensity, meaning that colour is highly desirable when interpreting images. However, most biological samples are essentially transparent, and nearly invisible when viewed using a standard optical microscope. It is therefore highly desirable to be able to produce coloured images without needing to add any stains or dyes, which can alter the sample properties.

View Article and Find Full Text PDF

The integration of the Gas Dynamic Virtual Nozzle (GDVN) and microfluidic technologies has proven to be a promising sample delivery solution for biomolecular imaging studies and has the potential to be transformative for a range of applications in physics, biology, and chemistry. Here, we review the recent advances in the emerging field of microfluidic mix-and-jet sample delivery devices for the study of biomolecular reaction dynamics. First, we introduce the key parameters and dimensionless numbers involved in their design and characterisation.

View Article and Find Full Text PDF

MyD88 and MAL are Toll-like receptor (TLR) adaptors that signal to induce pro-inflammatory cytokine production. We previously observed that the TIR domain of MAL (MAL) forms filaments in vitro and induces formation of crystalline higher-order assemblies of the MyD88 TIR domain (MyD88). These crystals are too small for conventional X-ray crystallography, but are ideally suited to structure determination by microcrystal electron diffraction (MicroED) and serial femtosecond crystallography (SFX).

View Article and Find Full Text PDF

Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited.

View Article and Find Full Text PDF

Cholesterol is believed to induce the formation of membrane domains, "rafts", which are implicated in a range of natural and pathologic membrane processes. Therefore, it is important to understand the role that cholesterol plays in the formation of these structures. Here, we use label-free spectroscopic imaging to investigate cholesterol fractioning in supported bilayer membranes at nanoscale.

View Article and Find Full Text PDF

A facility for performing serial crystallography measurements has been developed at the Australian synchrotron. This facility incorporates a purpose built high viscous injector, Lipidico, as part of the macromolecular crystallography (MX2) beamline to measure large numbers of small crystals at room temperature. The goal of this technique is to enable crystals to be grown/transferred to glass syringes to be used directly in the injector for serial crystallography data collection.

View Article and Find Full Text PDF

Serial femtosecond crystallography (SFX) methods used at X-ray free electron lasers (XFELs) offer a range of new opportunities for structural biology. A crucial component of SFX experiments is sample delivery. Microfluidic devices can be employed in SFX experiments to precisely deliver microcrystals to the X-ray beam and to trigger molecular dynamics rapid mix-and-inject measurements.

View Article and Find Full Text PDF

Here we report the results of shear-mode thicknesses and absorption coefficient measurements made on neat membranes using scanning near-field optical microscopy (SNOM). Biomimic neat membranes composed of two different types of phoshpholipid molecules: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were found to exhibit different absorption coefficients under the SNOM. The localization of the lipids could be identified and correlated to the morphology of the membrane domains indicating that SNOM can be an effective and accurate approach for the label-free characterization of the structure-function relationships in cell membranes.

View Article and Find Full Text PDF

The new European X-ray Free-Electron Laser (European XFEL) is the first X-ray free-electron laser capable of delivering intense X-ray pulses with a megahertz interpulse spacing in a wavelength range suitable for atomic resolution structure determination. An outstanding but crucial question is whether the use of a pulse repetition rate nearly four orders of magnitude higher than previously possible results in unwanted structural changes due to either radiation damage or systematic effects on data quality. Here, separate structures from the first and subsequent pulses in the European XFEL pulse train were determined, showing that there is essentially no difference between structures determined from different pulses under currently available operating conditions at the European XFEL.

View Article and Find Full Text PDF

Characterising and understanding the mechanisms involved in cell death are especially important to combating threats to human health, particularly for the study of antimicrobial peptides and their effectiveness against pathogenic fungi. However, imaging these processes often relies on the use of synthetic molecules which bind to specific cellular targets to produce contrast. Here we study yeast cell death, induced by the anti-fungal peptide, NaD1.

View Article and Find Full Text PDF

Biological X-ray fluorescence microscopy (XFM) is an important tool for determining quantitative distributions of bioinorganics and essential trace elements. Here we present a new analysis approach for rapid nanoscale ptychographic imaging and simultaneous chemical mapping of large radiation sensitive specimens without image degradation associated with probe evolution.

View Article and Find Full Text PDF
Article Synopsis
  • The European X-ray Free-Electron Laser (XFEL) is the first of its kind to deliver X-ray pulses at megahertz pulse rates, vastly improving on previous technologies.
  • Researchers have successfully measured high-quality diffraction data at these new pulse rates, validating the laser's capabilities.
  • Two complete datasets were collected: one from lysozyme and another from a β-lactamase complex, demonstrating the potential for advanced structural analysis and dynamic measurements in molecular science.
View Article and Find Full Text PDF

The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of β-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in β-hematin data collected during SFX and synchrotron crystallography experiments.

View Article and Find Full Text PDF