Publications by authors named "Brian A Powell"

Safe and effective storage of radioactive waste is essential to protect human and environmental health. Due to the potential for accidental releases and the severity of the associated risks, it is imperative to further understand radionuclide transport should an accident occur. This study was the second set of measurements conducted in 2022 of an ongoing experiment that has analyzed the vadose zone migration of radionuclides from cementitious wasteforms at the Savannah River Site over the last ten years.

View Article and Find Full Text PDF
Article Synopsis
  • Salt marshes are crucial coastal ecosystems that filter nutrients and pollutants, with the mid-Atlantic U.S. marshes exhibiting unique geochemical behaviors compared to other global estuaries.
  • Research on the southeastern U.S. salt marsh revealed that metal concentrations and bioaccumulation varied significantly based on marsh location and species, with high marsh zones showing lower sediment concentrations but higher biotic accumulation factors.
  • The study found specific patterns in metal accumulation among different species, particularly in bivalves, providing insights for biomonitoring and potential remediation strategies like phytoremediation, highlighting the need for targeted environmental management.
View Article and Find Full Text PDF

Plutonium (Pu) cycling and mobility in the environment can be impacted by the iron cycle and microbial community dynamics. We investigated the spatial and temporal changes of the microbiome in an iron (Fe)-rich, plutonium-contaminated, monomictic reservoir (Pond B, Savannah River Site, South Carolina, USA). The microbial community composition varied with depth during seasonal thermal stratification and was strongly correlated with redox.

View Article and Find Full Text PDF

A workshop was held at the Massachusetts Institute of Technology (MIT) on July 25th and 26th, 2022. The objective was to develop a blueprint for educating next-generation engineers and scientists about nuclear waste management and disposal, which requires knowledge from diverse disciplines, including nuclear, chemical, civil, environmental, and geological science and engineering. The 49 participants included university professors, researchers, industry experts, and government officials from different areas.

View Article and Find Full Text PDF

This study explores the transport and retention of CdSe/ZnS quantum dot (QD) nanoparticles in water-saturated sand columns as a function of electrolytes (Na and Ca), ionic strength, organic ligand citrate, and Suwannee River natural organic matter (SRNOM). Numerical simulations were carried out to understand the mechanisms that govern the transport and interactions of QDs in porous media and to assess how environmental parameters impact these mechanisms. An increase in the ionic strength of NaCl and CaCl increased QDs retention in porous media.

View Article and Find Full Text PDF

Unlike short-term laboratory experiments, studies at sites historically contaminated with radionuclides can provide insight into contaminant migration behavior at environmentally-relevant decadal timescales. One such site is Pond B, a seasonally stratified reservoir within Savannah River Site (SC, USA) has low levels (μBq L) of plutonium in the water column. Here, we evaluate the origin of plutonium using high-precision isotope measurements, investigate the impact of water column geochemistry on plutonium cycling during different stratification periods, and re-evaluate long-term mass balance of plutonium in the pond.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the Atlantic ribbed mussel accumulates and eliminates aqueous radium (Ra) in its tissues, providing new insights into the bioavailability of this radioactive element in coastal habitats.
  • Most organs reached a steady state for Ra concentration within a week, with a relatively low uptake rate and a much faster elimination rate once transferred to Ra-free seawater.
  • The research indicates that marine mussels may acquire Ra not just from water but also through filter-feeding on contaminated particles or food sources, reflecting a lower potential for Ra accumulation compared to freshwater mussels.
View Article and Find Full Text PDF

Women are underrepresented in academia's higher ranks. Promotion oftentimes requires positive student-provided course evaluations. At a U.

View Article and Find Full Text PDF

Uranium dioxide (UO) and metaschoepite (UO•nHO) particles have been identified as contaminants at nuclear sites. Understanding their behavior and impact is crucial for safe management of radioactively contaminated land and to fully understand U biogeochemistry. The Savannah River Site (SRS) (South Carolina, USA), is one such contaminated site, following historical releases of U-containing wastes to the vadose zone.

View Article and Find Full Text PDF

This work investigates the uptake and root-shoot transport of plutonium (Pu) and iron (Fe) in corn ( Zea mays ) to gain insight into the Pu uptake pathway. Plutonium has no known biological function in plants yet may feasibly enter plants through the uptake pathway used by Fe (an essential nutrient), as these two elements have similar chemical properties. A series of experiments was conducted in which two hydroponically grown corn strains (one normal and one deficient in the transporter protein for Fe) were exposed to varying concentrations of complexed Pu and Fe.

View Article and Find Full Text PDF

This study examines the ability of the grass species Andropogon virginicus to alter the subsurface transport and redistribution of a suite of radionuclides (Tc, Cs (stable analog for Cs and Cs), Np, U) with varying chemical behaviors in a Savannah River Site soil via the use of vegetated and unvegetated soil columns. After an acclimation period, a small volume of solution containing all radionuclides was introduced into the columns via Rhizon© pore water sampling tubes. Plants were grown for an additional 4 weeks before shoots were harvested, and columns were prepared for sampling.

View Article and Find Full Text PDF

There remains a lack of knowledge regarding ecosystem transfer, transport processes, and mechanisms, which influence the long-term mobility of Pu-239 and Cs-137 in natural environments. Monitoring the distribution and migration of trace radioisotopes as ecosystem tracers has the potential to provide insight into the underlying mechanisms of geochemical cycles. This study investigated the distribution of anthropogenic radionuclides Pu-239 and Cs-137 along with total organic carbon, iron, and trace element in contaminated sediments of Pond B at the Savannah River Site (SRS).

View Article and Find Full Text PDF

Field lysimeters tests examined leaching of technetium-99 (Tc) from two types of cementitious waste forms and found that the presence of blast furnace slag reduced the overall leaching of Tc from the waste form. The two cementitious waste forms were a slag-grout 45%/45%/10% mixture of fly ash, blast furnace slag, and cement, respectively, referred to as slag-grout or a 55%/45% mixture of cement and fly ash, respectively, referred to here simply as cement. Duplicate sources of each composition were buried in four lysimeters for approximately 10 months to evaluate leaching characteristics under natural meteorological conditions in South Carolina, USA.

View Article and Find Full Text PDF

The influence of temperature on the adsorption of metal ions at the solid-water interface is often overlooked, despite the important role that adsorption plays in metal-ion fate and transport in the natural environment where temperatures vary widely. Herein, we examine the temperature-dependent adsorption of uranium, a widespread radioactive contaminant, onto the ubiquitous iron oxide, hematite. The multitemperature batch adsorption data and surface complexation models indicate that the adsorption of uranium, as the hexavalent uranyl (UO) ion, increases significantly with increasing temperature, with an adsorption enthalpy (Δ) of +71 kJ mol.

View Article and Find Full Text PDF

The risks of environmental exposures of quantum dot (QD) nanoparticles are increasing, but these risks are difficult to assess because fundamental questions remain about factors affecting the mobility of QDs. The objective of this study is to help address this shortcoming by evaluating the physico-chemical mechanisms controlling the transport and retention of CdSe/ZnS QDs under various environmental conditions. The approach was to run a series of laboratory-scale column experiments where QDs were transported through saturated porous media with different pH values and concentrations of citrate and Suwannee River natural organic matter (SRNOM).

View Article and Find Full Text PDF

Plants could mobilize (dissolution followed by vertical transport) uranium (U) from mineral forms that are otherwise stable. However, the variability of this plant-mediated mobilization of U as a function of the presence of various essential plant nutrients contained in these minerals remains unknown. A series of column experiments were conducted using to quantify the vertical transport of U from stable mineral forms as influenced by the chemical and physical coexistence of U with the essential nutrient, phosphorus (P).

View Article and Find Full Text PDF

The rapid screening of plutonium from aqueous sources remains a critical challenge for nuclear nonproliferation efforts. The determination of trace-level Pu isotopes in water requires offsite sample preparation and analysis; therefore, new methods that combine plutonium purification, concentration, and isotopic screening in a fieldable detection system will provide an invaluable tool for nuclear safeguards. This contribution describes the development and characterization of thin polymer-ligand films for the isolation and concentration of waterborne Pu for direct spectroscopic analyses.

View Article and Find Full Text PDF

We investigated the influence of natural organic matter (NOM) on the behavior of Pu(V) in the vadose zone through a combination of the field lysimeter and laboratory studies. Well-defined solid sources of NHPu(V)OCO(s) were placed in two 5-L lysimeters containing NOM-amended soil collected from the Savannah River Site (SRS) or unamended vadose zone soil and exposed to 3 years of natural South Carolina, USA, meteorological conditions. Lysimeter soil cores were removed from the field, used in desorption experiments, and characterized using wet chemistry methods and X-ray absorption spectroscopy.

View Article and Find Full Text PDF

Radiocesium (Cs) sorption by moderately weathered, sand-sized muscovite, obtained as a byproduct of kaolin ore processing, was observed at various concentrations of added stable Cs (0-100 μmol/L) over a 130 d period. After 18 h of batch sorption with 1 mmol/L NaCl as background electrolyte, conditional Cs K values were near 2000 L/kg across the entire range of added stable Cs. Over four succeeding months, the K values increased by large factors for suspensions with little added Cs but increased only slightly for the suspensions with the most added Cs.

View Article and Find Full Text PDF

Sorption properties of polydopamine (PDA) for uranium and plutonium from an aqueous environment are reported at three different pH values (2, 4 and 6.5-7). In addition to deionized (DI) water, artificial groundwater (GW) and seawater (SW) were used with U uptake close to 100% in each case.

View Article and Find Full Text PDF