Researchers modeling historical heights have typically relied on the restrictive assumption of a normal distribution, only the mean of which is affected by age, income, nutrition, disease, and similar influences. To avoid these restrictive assumptions, we develop a new semiparametric approach in which covariates are allowed to affect the entire distribution without imposing any parametric shape. We apply our method to a new database of height distributions for Italian provinces, drawn from conscription records, of unprecedented length and geographical disaggregation.
View Article and Find Full Text PDFA restricted maximum likelihood (ML) estimator is presented and evaluated for use with truncated height samples. In the common situation of a small sample truncated at a point not far below the mean, the ordinary ML estimator suffers from high sampling variability. The restricted estimator imposes an a priori value on the standard deviation and freely estimates the mean, exploiting the known empirical stability of the former to obtain less variable estimates of the latter.
View Article and Find Full Text PDF