In this paper, we introduce a novel concordance-based predictive uncertainty (CPU)-Index, which integrates insights from subgroup analysis and personalized AI time-to-event models. Through its application in refining lung cancer screening (LCS) predictions generated by an individualized AI time-to-event model trained with fused data of low dose CT (LDCT) radiomics with patient demographics, we demonstrate its effectiveness, resulting in improved risk assessment compared to the Lung CT Screening Reporting & Data System (Lung-RADS). Subgroup-based Lung-RADS faces challenges in representing individual variations and relies on a limited set of predefined characteristics, resulting in variable predictions.
View Article and Find Full Text PDFPurpose: We aim to interrogate the role of positron emission tomography (PET) image discretization parameters on the prognostic value of radiomic features in patients with oropharyngeal cancer.
Approach: A prospective clinical trial (NCT01908504) enrolled patients with oropharyngeal squamous cell carcinoma (; mixed HPV status) undergoing definitive radiotherapy and evaluated intra-treatment fluorodeoxyglucose PET as a potential imaging biomarker of early metabolic response. The primary tumor volume was manually segmented by a radiation oncologist on PET/CT images acquired two weeks into treatment (20 Gy).
Background: Delta radiomics is a high-throughput computational technique used to describe quantitative changes in serial, time-series imaging by considering the relative change in radiomic features of images extracted at two distinct time points. Recent work has demonstrated a lack of prognostic signal of radiomic features extracted using this technique. We hypothesize that this lack of signal is due to the fundamental assumptions made when extracting features via delta radiomics, and that other methods should be investigated.
View Article and Find Full Text PDF