Publications by authors named "Breuer U"

This study describes a novel process in which staple fiber yarns made from recycled carbon fibers (rCFs) and polyamide 6 (PA6) fibers are further processed into semi-finished tape products in a modified impregnation and calendaring process. In this process, the staple fiber yarns are heated above the melting temperature of the polymer, impregnated, and stretched to staple fiber tapes (SF tapes) in the calendaring unit. SF tapes with different degrees of stretching and/or repasses were produced.

View Article and Find Full Text PDF

Nanostructured composite electrode materials play a major role in the fields of catalysis and electrochemistry. The self-assembly of metallic nanoparticles on oxide supports via metal exsolution relies on the transport of reducible dopants towards the perovskite surface to provide accessible catalytic centres at the solid-gas interface. At surfaces and interfaces, however, strong electrostatic gradients and space charges typically control the properties of oxides.

View Article and Find Full Text PDF

: For children and adolescents affected by bilateral spastic cerebral palsy (BSCP), non-invasive neurostimulation with repetitive neuromuscular magnetic stimulation (rNMS) combined with physical exercises, conceptualized as functional rNMS (frNMS), represents a novel treatment approach. : In this open-label study, six children and two adolescents (10.4 ± 2.

View Article and Find Full Text PDF

Background: Impaired selective motor control, weakness and spasticity represent the key characteristics of motor disability in the context of bilateral spastic cerebral palsy. Independent walking ability is an important goal and training of the gluteal muscles can improve endurance and gait stability. Combining conventional physical excercises with a neuromodulatory, non-invasive technique like repetitive neuromuscular magnetic stimulation probably enhances effects of the treatment.

View Article and Find Full Text PDF

Background: Motor impairment due to spasticity, weakness, and insufficient selective motor control is a key feature of cerebral palsy (CP). For standing and walking, the gluteal muscles play an important role. Physical therapy represents an evidence-based treatment to promote strength and endurance but may be limited to address selective motor control.

View Article and Find Full Text PDF

The development of topography plays an important role when low-energy projectiles are used to modify the surface or analyze the properties of various materials. It can be a feature that allows one to create complex structures on the sputtered surface. It can also be a factor that limits depth resolution in ion-based depth profiling methods.

View Article and Find Full Text PDF

Exsolution phenomena are highly debated as efficient synthesis routes for nanostructured composite electrode materials for the application in solid oxide cells (SOCs) and the development of next-generation electrochemical devices for energy conversion. Utilizing the instability of perovskite oxides, doped with electrocatalytically active elements, highly dispersed nanoparticles can be prepared at the perovskite surface under the influence of a reducing heat treatment. For the systematic study of the mechanistic processes governing metal exsolution, epitaxial SrTiNbNiO thin films of well-defined stoichiometry are synthesized and employed as model systems to investigate the interplay of defect structures and exsolution behavior.

View Article and Find Full Text PDF

Parasitic absorption and limited fill factor (FF) brought in by the use of amorphous silicon layers are efficiency-limiting challenges for the silicon heterojunction (SHJ) solar cells. In this work, postdeposition phosphorus (P) catalytic doping (Cat-doping) on intrinsic amorphous silicon (a-Si:H(i)) at a low substrate temperature was carried out and a P concentration of up to 6 × 10 cm was reached. The influences of filament temperature, substrate temperature, and processing pressure on the P profiles were systemically studied by secondary-ion mass spectrometry.

View Article and Find Full Text PDF

The interface between electronic components and biological objects plays a crucial role in the success of bioelectronic devices. Since the electronics typically include different elements such as an insulating substrate in combination with conducting electrodes, an important issue of bioelectronics involves tailoring and optimizing the interface for any envisioned applications. In this paper, we present a method for functionalizing insulating substrates (SiO) and metallic electrodes (Pt) simultaneously with a stable monolayer of organic molecules ((3-aminopropyl)triethoxysilane (APTES)).

View Article and Find Full Text PDF

Future development of the modern nanoelectronics and its flagships internet of things, artificial intelligence, and neuromorphic computing is largely associated with memristive elements, offering a spectrum of inevitable functionalities, atomic level scalability, and low-power operation. However, their development is limited by significant variability and still phenomenologically orientated materials' design strategy. Here, we highlight the vital importance of materials' purity, demonstrating that even parts-per-million foreign elements substantially change performance.

View Article and Find Full Text PDF

Perovskites such as SrTiO, BaTiO, and CaTiO have become key materials for future energy-efficient memristive data storage and logic applications due to their ability to switch their resistance reversibly upon application of an external voltage. This resistance switching effect is based on the evolution of nanoscale conducting filaments with different stoichiometry and structure than the original oxide. In order to design and optimize memristive devices, a fundamental understanding of the interaction between electrochemical stress, stoichiometry changes and phase transformations is needed.

View Article and Find Full Text PDF

SiGeSn ternaries are grown on Ge-buffered Si wafers incorporating Si or Sn contents of up to 15 at%. The ternaries exhibit layer thicknesses up to 600 nm, while maintaining a high crystalline quality. Tuning of stoichiometry and strain, as shown by means of absorption measurements, allows bandgap engineering in the short-wave infrared range of up to about 2.

View Article and Find Full Text PDF

(Si)GeSn is an emerging group IV alloy system offering new exciting properties, with great potential for low power electronics due to the fundamental direct band gap and prospects as high mobility material. In this Article, we present a systematic study of HfO2/TaN high-k/metal gate stacks on (Si)GeSn ternary alloys and low temperature processes for large scale integration of Sn based alloys. Our investigations indicate that SiGeSn ternaries show enhanced thermal stability compared to GeSn binaries, allowing the use of the existing Si technology.

View Article and Find Full Text PDF

Electrochemical metallisation (ECM) memory cells potentially suffer from limited memory retention time, which slows down the future commercialisation of this type of data memory. In this work, we investigate Ag/GeSx/Pt redox-based resistive memory cells (ReRAM) with and without an additional Ta barrier layer by time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray absorption spectroscopy (XAS) and synchrotron high-energy X-ray diffractometry (XRD) to investigate the physical mechanism behind the shift and/or loss of OFF data retention. Electrical measurements demonstrate the effectiveness and high potential of the diffusion barrier layer in practical applications.

View Article and Find Full Text PDF

A combined macroscopic and microanalytical approach was applied on two distinct barite samples from Ra uptake batch experiments using time of flight-secondary ion mass spectrometry (ToF-SIMS) and detailed scanning electron microscopy (SEM) investigations. The experiments were set up at near to equilibrium conditions to distinguish between two possible scenarios for the uptake of Ra by already existent barite: (1) formation of a Ba1-xRaxSO4 solid solution surface layer on the barite or (2) a complete recrystallization, leading to homogeneous Ba1-xRaxSO4 crystals. It could be clearly shown that Ra uptake in all barite particles analyzed within this study is not limited to the surface but extends to the entire solid.

View Article and Find Full Text PDF

Aim: Optimizing movement quality is a common rehabilitation goal for children with cerebral palsy (CP). The new Quality Function Measure (QFM)--a revision of the Gross Motor Performance Measure (GMPM)--evaluates five attributes: Alignment, Co-ordination, Dissociated movement, Stability, and Weight-shift, for the Gross Motor Function Measure (GMFM) Stand and Walk/Run/Jump items. This study evaluated the reliability and discriminant validity of the QFM.

View Article and Find Full Text PDF

Rare earth oxides are promising candidates for future integration into nano-electronics. A key property of these oxides is their ability to form silicates in order to replace the interfacial layer in Si-based complementary metal-oxide field effect transistors. In this work a detailed study of lanthanum lutetium oxide based gate stacks is presented.

View Article and Find Full Text PDF

In Rhodococcus ruber IFP 2001, Rhodococcus zopfii IFP 2005, and Gordonia sp. strain IFP 2009, the cytochrome P450 monooxygenase EthABCD catalyzes hydroxylation of methoxy and ethoxy residues in the fuel oxygenates methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). The expression of the IS3-type transposase-flanked eth genes is ETBE dependent and controlled by the regulator EthR (C.

View Article and Find Full Text PDF

Bioimaging mass spectrometric techniques allow direct mapping of metal and biomolecule distributions with high spatial resolution in biological tissue. In this study laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used for imaging of transition metals (Fe, Cu, Zn, Mn, and Ti), alkali and alkaline-earth metals (Na, K, Mg, and Ca, respectively), and selected nonmetals (such as C, P, and S) in native cryosections of mouse heart. The metal and nonmetal images clearly illustrated the shape and the anatomy of the samples.

View Article and Find Full Text PDF

In this study, a methylotrophic bacterium, Methylobacterium rhodesianum MB 126, was used for the production of the chiral compound (R)-3-hydroxybutyrate (R-3HB) from methanol. R-3HB is formed during intracellular degradation of the storage polymer (R)-3-polyhydroxybutyrate (PHB). Since the monomer R-3HB does not accumulate under natural conditions, M.

View Article and Find Full Text PDF

Lateral exchange of water and nutrients between xylem and surrounding tissues helps to de-couple uptake from utilization in all parts of a plant. We studied the dynamics of these exchanges, using stable isotope tracers for water (H(2)(18)O), magnesium ((26)Mg), potassium ((41)K) and calcium ((44)Ca) delivered via a cut stem for various periods to the transpiration stream of bean shoots (Phaseolus vulgaris cv. Fardenlosa Shiny).

View Article and Find Full Text PDF

Fluxes of mineral nutrients in the xylem are strongly influenced by interactions with the surrounding stem tissues and are probably regulated by them. Toward a mechanistic understanding of these interactions, we applied stable isotope tracers of magnesium, potassium, and calcium continuously to the transpiration stream of cut bean (Phaseolus vulgaris) shoots to study their radial exchange at the cell and tissue level with stem tissues between pith and phloem. For isotope localization, we combined sample preparation with secondary ion mass spectrometry in a completely cryogenic workflow.

View Article and Find Full Text PDF

Long-term preservation of bioreporter bacteria is essential for the functioning of cell-based detection devices, particularly when field application, e.g., in developing countries, is intended.

View Article and Find Full Text PDF

A new approach to trace the transport routes of macronutrients in plants at the level of cells and tissues and to measure their elemental distributions was developed for investigating the dynamics and structure-function relationships of transport processes. Stem samples from Phaseolus vulgaris were used as a test system. Shock freezing and cryo-preparation were combined in a cryogenic chain with cryo-time-of-flight secondary ion mass spectrometry (cryo-ToF-SIMS) for element and isotope-specific imaging.

View Article and Find Full Text PDF