Colorectal cancer is the second most deadly and third most common cancer in the world. Its development is heterogenous, with multiple mechanisms of carcinogenesis. Two distinct mechanisms include the adenoma-carcinoma sequence and the serrated pathway.
View Article and Find Full Text PDFBitter taste receptors serve as a vital component in the defense system against toxin intake by animals, and the family of genes encoding these receptors has been demonstrated, usually by family size variance, to correlate with dietary preference. However, few systematic studies of specific Tas2R to unveil their functional evolution have been conducted. Here, we surveyed Tas2R16 across all major clades of primates and reported a rare case of a convergent change to increase sensitivity to β-glucopyranosides in human and a New World monkey, the white-faced saki.
View Article and Find Full Text PDFColorectal cancer (CRC) is the third most commonly diagnosed cancer, the third leading cause of cancer-related deaths, and has been on the rise among young adults in the United States. Research has established that the colonic microbiome is different in patients with CRC compared to healthy controls, but few studies have investigated if and how the microbiome may relate to CRC progression through the serrated pathway versus the adenoma-carcinoma sequence.Our view is that progress in CRC microbiome research requires consideration of how the microbiome may contribute to CRC carcinogenesis through the distinct pathways that lead to CRC, which could enable the creation of novel and tailored prevention, screening, and therapeutic interventions.
View Article and Find Full Text PDF