Publications by authors named "Brett Yurash"

As in many fields, the most exciting endeavors in photon upconversion research focus on increasing the efficiency (upconversion quantum yield) and performance (anti-Stokes shift) while diminishing the cost of production. In this vein, studies employing metal-free thermally activated delayed fluorescence (TADF) sensitizers have garnered increased interest. Here, for the first time, the strategy of ternary photon upconversion is utilized with the TADF sensitizer 2,4,5,6-tetrakis(carbazol-9-yl)isophthalonitrile (4CzIPN), resulting in a doubling of the upconversion quantum yield in comparison to the binary system employing p-terphenyl as the emitter.

View Article and Find Full Text PDF

We report on computational studies of the potential of three borane Lewis acids (LAs) (B(CF) (BCF), BF, and BBr) to form stable adducts and/or to generate positive polarons with three different semiconducting π-conjugated polymers (PFPT, PCPDTPT and PCPDTBT). Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations based on range-separated hybrid (RSH) functionals provide insight into changes in the electronic structure and optical properties upon adduct formation between LAs and the two polymers containing pyridine moieties, PFPT and PCPDTPT, unravelling the complex interplay between partial hybridization, charge transfer and changes in the polymer backbone conformation. We then assess the potential of BCF to induce p-doping in PCPDTBT, which does not contain pyridine groups, by computing the energetics of various reaction mechanisms proposed in the literature.

View Article and Find Full Text PDF

PCPDTBT-SO K (CPE-K), a conjugated polyelectrolyte, is presented as a mixed conductor material that can be used to fabricate high transconductance accumulation mode organic electrochemical transistors (OECTs). OECTs are utilized in a wide range of applications such as analyte detection, neural interfacing, impedance sensing, and neuromorphic computing. The use of interdigitated contacts to enable high transconductance in a relatively small device area in comparison to standard contacts is demonstrated.

View Article and Find Full Text PDF

Precise doping of organic semiconductors allows control over the conductivity of these materials, an essential parameter in electronic applications. Although Lewis acids have recently shown promise as dopants for solution-processed polymers, their doping mechanism is not yet fully understood. In this study, we found that B(CF) is a superior dopant to the other Lewis acids investigated (BF, BBr and AlCl).

View Article and Find Full Text PDF

Fluorescent materials that efficiently convert triplet excitons into singlets through reverse intersystem crossing (RISC) rival the efficiencies of phosphorescent state-of-the-art organic light-emitting diodes. This upconversion process, a phenomenon known as thermally activated delayed fluorescence (TADF), is dictated by the rate of RISC, a material-dependent property that is challenging to determine experimentally. In this work, a new analytical model is developed which unambiguously determines the magnitude of RISC, as well as several other important photophysical parameters such as exciton diffusion coefficients and lengths, all from straightforward time-resolved photoluminescence measurements.

View Article and Find Full Text PDF

It is pivotal to achieve efficient triplet-triplet annihilation based photon upconversion (TTA-UC) in the solid-state for enhancing potentials of renewable energy production devices. However, the UC efficiency of solid materials is largely limited by low fluorescence quantum yields that originate from the aggregation of TTA-UC chromophores and also by severe back energy transfer from the acceptor singlet state to the singlet state of the triplet donor in the condensed state. In this work, to overcome these issues, we introduce a highly fluorescent singlet energy collector as the third component of donor-doped acceptor crystalline films, in which dual energy migration, i.

View Article and Find Full Text PDF

Peptoids (N-substituted glycine oligomers) are widely used peptidomimetics, and an enhanced understanding of their structures is needed to expand their utility, particularly in aqueous applications. We report the synthesis and structural study of four water-soluble peptoids that include strongly helix-promoting (S)-N-1-(naphthylethyl)glycine residues. Peptoid structure changes with both peptoid length and solvent composition.

View Article and Find Full Text PDF