Publications by authors named "Brett Vanderwerff"

Patients with inflammatory bowel disease (IBD) are at increased risk of infection (CDI). Herein, we aimed to determine if genetic risk contributes to this observed association. We carried out a genome-wide association study (GWAS) analysis in the Michigan Genomics Initiative and the United Kingdom Biobank for CDI based on ICD codes and meta-analyzed these results with similar publicly accessible GWAS summary statistics from Finngen.

View Article and Find Full Text PDF
Article Synopsis
  • Iron is a vital mineral connected to various biological functions, with studies linking its dysregulation to cardiovascular and neurodegenerative diseases, though the cause-effect relationship remains unclear.
  • The research utilized computational methods and meta-analysis of genome-wide studies to look at how genetically predicted iron levels relate to the risk of 11 different diseases, revealing significant correlations especially with coronary heart disease and cholesterol levels.
  • The findings suggest a potential protective effect of iron on Parkinson's disease risk in women, highlighting the need for further exploration of how iron impacts health differently across sexes and could inform future disease prevention and treatment strategies.
View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the role of genetics in postoperative nausea and vomiting (PONV), which impacts patient satisfaction and results in unplanned hospital admissions after surgery, hypothesizing that genetic factors might explain some of the variability in risk that traditional factors do not cover.
  • - Researchers conducted a genome-wide association study using data from patients at Michigan Medicine and Vanderbilt University Medical Center, identifying 46 genetic variants associated with PONV and developing a polygenic risk score to better predict occurrences in different patient cohorts.
  • - Findings showed that higher polygenic risk scores corresponded with increased risk for developing PONV, suggesting that genetic predisposition combined with known clinical risks can improve understanding and prediction of this complication in surgical patients.
View Article and Find Full Text PDF
Article Synopsis
  • A study examined how genetic predispositions to lower white blood cell (WBC) counts affect health outcomes in over 89,000 biobank participants, focusing on variations not linked to diseases.
  • Results showed that individuals with a genetic tendency for lower WBC counts had a reduced likelihood of finding abnormal pathology in bone marrow biopsies but were more prone to leukopenia during chemotherapy and immunosuppressant treatments.
  • The findings indicate that some people might experience unnecessary changes in their medical treatment due to their genetic profile, suggesting the need for personalized care approaches.
View Article and Find Full Text PDF
Article Synopsis
  • Type 2 diabetes (T2D) is a complex disease influenced by various genetic factors and molecular mechanisms that vary by cell type and ancestry.
  • In a large study involving over 2.5 million individuals, researchers identified 1,289 significant genetic associations linked to T2D, including 145 new loci not previously reported.
  • The study categorized T2D signals into eight distinct clusters based on their connections to cardiometabolic traits and showed that these genetic profiles are linked to vascular complications, emphasizing the role of obesity-related processes across different ancestry groups.
View Article and Find Full Text PDF

Polygenic variation unrelated to disease contributes to interindividual variation in baseline white blood cell (WBC) counts, but its clinical significance is undefined. We investigated the clinical consequences of a genetic predisposition toward lower WBC counts among 89,559 biobank participants from tertiary care centers using a polygenic score for WBC count (PGS) comprising single nucleotide polymorphisms not associated with disease. A predisposition to lower WBC counts was associated with a decreased risk of identifying pathology on a bone marrow biopsy performed for a low WBC count (odds-ratio=0.

View Article and Find Full Text PDF

Using pharmacogenetics (PGx) to inform clinical decision making can benefit patients but clinical use of PGx testing has been limited. Existing genetics data obtained in the course of research could be used to identify patients who are suspected, but have not yet been confirmed, to carry clinically actionable genotypes, in whom confirmatory genetic testing could be conducted for highly efficient PGx implementation. Herein, we demonstrate that it is regulatorily and technically feasible to implement PGx by identifying suspected carriers of actionable genotypes within an institutional genetics data repository and conduct confirmatory PGx testing immediately prior to that patient receiving the PGx-relevant drug, using a case study of DPYD testing prior to fluoropyrimidine chemotherapy.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases.

View Article and Find Full Text PDF

Biobanks of linked clinical patient histories and biological samples are an efficient strategy to generate large cohorts for modern genetics research. Biobank recruitment varies by factors such as geographic catchment and sampling strategy, which affect biobank demographics and research utility. Here, we describe the Michigan Genomics Initiative (MGI), a single-health-system biobank currently consisting of >91,000 participants recruited primarily during surgical encounters at Michigan Medicine.

View Article and Find Full Text PDF

Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)-a collaborative network of 23 biobanks from 4 continents representing more than 2.

View Article and Find Full Text PDF
Article Synopsis
  • Reduced glomerular filtration rate (GFR) is a precursor to kidney failure, influenced by factors like genetics and diabetes (DM), but the interaction between these factors is not well understood.
  • A large-scale genome-wide association study (GWAS) analyzed eGFR across almost 1.5 million individuals, revealing distinct genetic loci that differ between those with and without diabetes.
  • The findings identified potential new targets for drug development aimed at protecting kidney function, highlighting that many drug interventions could be effective for both diabetic and non-diabetic populations.
View Article and Find Full Text PDF

Purpose: Cyclophosphamide is a commonly used cancer agent that is metabolically activated by polymorphic enzymes. This study aims to investigate the association between predicted activity of candidate pharmacogenes with severe toxicity during cyclophosphamide treatment.

Methods: Genome-wide genetic data was collected from an institutional genetic data repository for CYP2B6, CYP3A4, CYP2C9, CYP2C19, GSTA1, GSTP1, ALDH1A1, ALDH3A1, ABCC1, ABCB1, and ERCC1.

View Article and Find Full Text PDF

Background: Inflammatory bowel disease is associated with an increased risk of skin cancer. The aims of this study were to determine whether IBD susceptibility variants are also associated with skin cancer susceptibility and if such risk is augmented by use of immune-suppressive therapy.

Methods: The discovery cohort included participants in the UK Biobank.

View Article and Find Full Text PDF

Objective: Haemorrhoidal disease (HEM) affects a large and silently suffering fraction of the population but its aetiology, including suspected genetic predisposition, is poorly understood. We report the first genome-wide association study (GWAS) meta-analysis to identify genetic risk factors for HEM to date.

Design: We conducted a GWAS meta-analysis of 218 920 patients with HEM and 725 213 controls of European ancestry.

View Article and Find Full Text PDF

Genotype imputation is an indispensable step in human genetic studies. Large reference panels with deeply sequenced genomes now allow interrogating variants with minor allele frequency < 1% without sequencing. Although it is critical to consider limits of this approach, imputation methods for rare variants have only done so empirically; the theoretical basis of their imputation accuracy has not been explored.

View Article and Find Full Text PDF

Pancreatic cancer is an aggressive disease with a poor prognosis for which current standard chemotherapeutic treatments offer little survival benefit. Receptor tyrosine kinases (RTK)s have garnered interest as therapeutic targets to augment or replace standard chemotherapeutic treatments because of their ability to promote cell growth, migration, and survival in various cancers. Met and Ron, which are homologous RTKs activated by the ligands hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP), respectively, are over-activated and display synergistic malignant effects in several cancers.

View Article and Find Full Text PDF

Pancreatic cancer is a leading cause of cancer deaths in the USA and is characterized by an exceptionally poor long-term survival rate compared with other major cancers. The hepatocyte growth factor (HGF) and macrophage stimulating protein (MSP) growth factor systems are frequently over-activated in pancreatic cancer and significantly contribute to cancer progression, metastasis, and chemotherapeutic resistance. Small molecules homologous to the 'hinge' region of HGF, which participates in its dimerization and activation, had been developed and shown to bind HGF with high affinity, antagonize HGF's actions, and possess anticancer activity.

View Article and Find Full Text PDF

Pancreatic cancer is among the leading causes of cancer death in the USA, with limited effective treatment options. A major contributor toward the formation and persistence of pancreatic cancer is the dysregulation of the hepatocyte growth factor (HGF)/Met (HGF receptor) and the macrophage-stimulating protein (MSP)/Ron (MSP receptor) systems. These systems normally mediate a variety of cellular behaviors including proliferation, survival, and migration, but are often overactivated in pancreatic cancer and contribute toward cancer progression.

View Article and Find Full Text PDF