Publications by authors named "Brett Schweers"

Tests for the identification of semen commonly involve the microscopic visualization of spermatozoa or assays for the presence of seminal markers such as acid phosphatase (AP) or prostate-specific antigen (PSA). Here, we describe the rapid stain identification kit for the identification of semen (RSID™-Semen), a lateral flow immunochromatographic strip test that uses two antihuman semenogelin monoclonal antibodies to detect the presence of semenogelin. The RSID™-Semen strip is specific for human semen, detecting <2.

View Article and Find Full Text PDF

With sexual assault evidence, the visualization of spermatozoa confirms that ejaculation has occurred. However, microscopic examination of spermatozoa is a laborious process and can sometimes result in sperm cells being overlooked. Here, we present the developmental validation of the SPERM HY-LITER™ kit, which contains a human sperm-specific mouse monoclonal antibody coupled to a fluorescent Alexa 488 dye.

View Article and Find Full Text PDF

In the 1970s, several human retinoblastoma cell lines were developed from cultures of primary tumors. As the human retinoblastoma cell lines were established in culture, growth properties and changes in cell adhesion were described. Those changes correlated with the ability of the human retinoblastoma cell lines to invade the optic nerve and metastasize in orthotopic xenograft studies.

View Article and Find Full Text PDF

Current methods for forensic identification of saliva generally assay for the enzymatic activity of alpha-amylase, an enzyme long associated with human saliva. Here, we describe the Rapid Stain IDentification (RSID-Saliva), a lateral flow immunochromatographic strip test that uses two antisalivary amylase monoclonal antibodies to detect the presence of salivary amylase, rather than the activity of the enzyme. We demonstrate that RSID-Saliva is accurate, reproducible, and highly sensitive for human saliva; RSID-Saliva detects less than 1 microL of saliva.

View Article and Find Full Text PDF

Human blood is the body fluid most commonly encountered at crime scenes, and blood detection may aid investigators in reconstructing what occurred during a crime. In addition, blood detection can help determine which items of evidence should be processed for DNA-STR testing. Unfortunately, many common substances can cause red-brown stains that resemble blood.

View Article and Find Full Text PDF

Background: The RB1 gene was the first tumor suppressor gene cloned from humans by studying genetic lesions in families with retinoblastoma. Children who inherit one defective copy of the RB1 gene have an increased susceptibility to retinoblastoma. Several years after the identification of the human RB1 gene, a targeted deletion of Rb was generated in mice.

View Article and Find Full Text PDF

Rb1 is essential for normal embryonic development, as null mice die in midgestation with widespread unscheduled cell proliferation. Rb1 protein (pRb) mediates cell cycle control by binding E2F transcription factors and repressing expression from E2F-dependent promoters. An increasing amount of evidence suggests that pRb loss also compromises cellular differentiation.

View Article and Find Full Text PDF

The use of knock-out and transgenic mice has been instrumental for advancing our understanding of retinal development and disease. In this perspective, we review existing genetic approaches to studying retinal development and present a series of new genetic tools that complement the use of standard knock-out and transgenic mice. Particular emphasis is placed on elucidating cell-autonomous and non-cell-autonomous roles of genes important for retinal development and disease in vivo.

View Article and Find Full Text PDF

The retinoblastoma susceptibility gene (RB1) was the first tumor suppressor gene identified in humans (Friend, et al., 1986) and the first tumor suppressor gene knocked out by targeted deletion in mice (Jacks, et al., Clarke, et al.

View Article and Find Full Text PDF

Maintenance of proper neuronal excitability is vital to nervous system function and normal behavior. A subset of Drosophila mutants that exhibit altered behavior also exhibit defective motor neuron excitability, which can be monitored with electrophysiological methods. One such mutant is the P-element insertion mutant bemused (bem).

View Article and Find Full Text PDF