Publications by authors named "Brett Poulin"

Apex marine predators, such as toothed whales and large petrels and albatrosses, ingest mercury (Hg) primarily in the form of methylmercury (MeHg) via prey consumption, which they detoxify as tiemannite (HgSe). However, it remains unclear how lower trophic level marine predators, termed mesopredators, with elevated Hg concentrations detoxify MeHg and what chemical species are formed. To address this need, we used high energy-resolution X-ray absorption near edge structure spectroscopy paired with nitrogen (N) and Hg stable isotopes to identify the chemical forms of Hg, Hg sources, and species-specific δHg isotopic values in emperor penguin, a mesopredator feeding primarily on Antarctic silverfish.

View Article and Find Full Text PDF
Article Synopsis
  • * Research conducted on the Snake River showed that about one-third of MeHg loads could not be traced back to upstream sources and were likely coming from these riparian areas.
  • * The findings indicate a significant correlation between MeHg levels in river surface waters and concentrations in local aquatic organisms, suggesting that MeHg produced in riparian zones enters the food web, which is vital for developing strategies to mitigate its impacts on fish populations.
View Article and Find Full Text PDF

Electronic (e-) cigarette formulations containing nicotine salts from a range of organic acid conjugates and pH values have dominated the commercial market. The acids in the nicotine salt formulations may alter the redox environment in e-cigarettes, impacting free radical formation in e-cigarette aerosol. Here, the generation of aerosol mass and free radicals from a fourth-generation e-cigarette device was evaluated at 2 wt % nicotine salts (pH 7, 30:70 mixture propylene glycol to vegetable glycerin) across eight organic acids used in e-liquids: benzoic acid (BA), salicylic acid (SLA), lactic acid (LA), levulinic acid (LVA), succinic acid (SA), malic acid (MA), tartaric acid (TA), and citric acid (CA).

View Article and Find Full Text PDF

Isotope fractionation related to photochemical reactions and planktonic uptake at the base of the food web is a major uncertainty in the biological application of mercury (Hg) stable isotopes. In freshwater systems, it is unclear how competitive interactions among methylmercury (MeHg), dissolved organic matter (DOM), and phytoplankton govern the magnitude of mass-dependent and mass-independent fractionation. This study investigated how DOM alters rates of planktonic MeHg uptake and photodegradation and corresponding Hg isotope fractionation in the presence of freshwater phytoplankton species, .

View Article and Find Full Text PDF

Understanding sources of mercury (Hg) and methylmercury (MeHg) to a water body is critical for management but is often complicated by poorly characterized Hg inputs and in situ processes, such as inorganic Hg methylation. In this study, we determined inorganic Hg and MeHg concentrations and loads (filter-passing and particulate fractions) for a semi-arid 164-kilometer stretch of the Snake River above the Hells Canyon Complex, a Hg-impaired hydroelectric reservoir complex on the Idaho-Oregon border, and used water quality measurements and Hg stable isotope ratios to create a comprehensive Hg source budget for the river. Results show that whereas most of the streamflow to the study reach comes from the main branch of the Snake River (i.

View Article and Find Full Text PDF

Aerosol formation and production yields from 11 carbonyls (carbonyl concentration per aerosol mass unit) were investigated (1) from a fourth-generation (4th gen) e-cigarette device at different coil resistances and coil age (0-5000 puffs) using unflavored e-liquid with 2% benzoic acid nicotine salt, (2) between a sub-ohm third-generation (3rd gen) tank mod at 0.12 Ω and a 4th gen pod at 1.2 Ω using e-liquid with nicotine salt, together with nicotine yield, and (3) from 3rd gen coils of different metals (stainless steel, kanthal, nichrome) using e-liquid with freebase nicotine.

View Article and Find Full Text PDF

Brownlee Reservoir is a mercury (Hg)-impaired hydroelectric reservoir that exhibits dynamic hydrological and geochemical conditions and is located within the Hells Canyon Complex in Idaho, USA. Methylmercury (MeHg) contamination in fish is a concern in the reservoir. While MeHg production has historically been attributed to sulfate-reducing bacteria and methanogenic archaea, microorganisms carrying the hgcA gene are taxonomically and metabolically diverse and the major biogeochemical cycles driving mercury (Hg) methylation are not well understood.

View Article and Find Full Text PDF

Over the past several decades, agricultural sulfur (S) use has dramatically increased. Excess S in the environment can cause several biogeochemical and ecologic consequences, including methylmercury production. This study investigated agriculturally associated changes to organic S─the most dominant form of S within soils─from field-to-watershed scales.

View Article and Find Full Text PDF

The chemical nature and stability of reduced dissolved organic sulfur (DOS) have implications on the biogeochemical cycling of trace and major elements across fresh and marine aquatic environments, but the underlying processes governing DOS stability remain obscure. Here, dissolved organic matter (DOM) was isolated from a sulfidic wetland, and laboratory experiments quantified dark and photochemical oxidation of DOS using atomic-level measurement of sulfur X-ray absorption near-edge structure (XANES) spectroscopy. DOS was completely resistant to oxidation by molecular oxygen in the dark and underwent rapid and quantitative oxidation to inorganic sulfate (SO) in the presence of sunlight.

View Article and Find Full Text PDF

Reservoirs in arid landscapes provide critical water storage and hydroelectric power but influence the transport and biogeochemical cycling of mercury (Hg). Improved management of reservoirs to mitigate the supply and uptake of bioavailable methylmercury (MeHg) in aquatic food webs will benefit from a mechanistic understanding of inorganic divalent Hg (Hg(II)) and MeHg fate within and downstream of reservoirs. Here, we quantified Hg(II), MeHg, and other pertinent biogeochemical constituents in water (filtered and associated with particles) at high temporal resolution from 2016-2020.

View Article and Find Full Text PDF

Methylmercury (MeHg) production is controlled by the bioavailability of inorganic divalent mercury (Hg(II) ) and Hg-methylation capacity of the microbial community (conferred by the hgcAB gene cluster). However, the relative importance of these factors and their interaction in the environment remain poorly understood. Here, metagenomic sequencing and a full-factorial MeHg formation experiment were conducted across a wetland sulfate gradient with different microbial communities and pore water chemistries.

View Article and Find Full Text PDF

Surface runoff mobilizes the burned residues and ashes produced during wildfires and deposits them in surface waters, thereby deteriorating water quality. A lack of a consistent reporting protocol precludes a quantitative understanding of how and to what extent wildfire may affect the water quality of surface waters. This study aims to analyze reported pre- and post-fire water quality data to inform the data reporting and highlight research opportunities.

View Article and Find Full Text PDF

Anoxic conditions within reservoirs related to thermal stratification and oxygen depletion lead to methylmercury (MeHg) production, a key process governing the uptake of mercury in aquatic food webs. Once formed within a reservoir, the timing and magnitude of the biological uptake of MeHg and the relative importance of MeHg export in water versus biological compartments remain poorly understood. We examined the relations between the reservoir stratification state, anoxia, and the concentrations and export loads of MeHg in aqueous and biological compartments at the outflow locations of two reservoirs of the Hells Canyon Complex (Snake River, Idaho-Oregon).

View Article and Find Full Text PDF

Monitoring mercury (Hg) levels in biota is considered an important objective for the effectiveness evaluation of the Minamata Convention. While many studies have characterized Hg levels in organisms at multiple spatiotemporal scales, concentration analyses alone often cannot provide sufficient information on the Hg exposure sources and internal processes occurring within biota. Here, we review the decadal scientific progress of using Hg isotopes to understand internal processes that modify the speciation, transport, and fate of Hg within biota.

View Article and Find Full Text PDF

Mercury (Hg) contamination has been a persistent concern in the Florida Everglades for over three decades due to elevated atmospheric deposition and the system's propensity for methylation and rapid bioaccumulation. Given declines in atmospheric Hg concentrations in the conterminous United States and efforts to mitigate nutrient release to the greater Everglades ecosystem, it was vital to assess how Hg dynamics responded on temporal and spatial scales. This study used a multimedia approach (water and biota) to examine Hg and methylmercury (MeHg) dynamics across a 76-site network within the southernmost portion of the region, Everglades National Park (ENP), from 2008 to 2018.

View Article and Find Full Text PDF

Climate change dramatically impacts Arctic and subarctic regions, inducing shifts in wetland nutrient regimes as a consequence of thawing permafrost. Altered hydrological regimes may drive changes in the dynamics of microbial mercury (Hg) methylation and bioavailability. Important knowledge gaps remain on the contribution of specific microbial groups to methylmercury (MeHg) production in wetlands of various trophic status.

View Article and Find Full Text PDF

A prerequisite for environmental and toxicological applications of mercury (Hg) stable isotopes in wildlife and humans is quantifying the isotopic fractionation of biological reactions. Here, we measured stable Hg isotope values of relevant tissues of giant petrels ( spp.).

View Article and Find Full Text PDF

Natural organic matter corona (NOM corona) is an interfacial area between nanomaterials (NMs) and the surrounding environment, which gives rise to NMs' unique surface identity. While the importance of the formation of natural organic matter (NOM) corona on engineered nanomaterials (NMs) to NM behavior, fate, and toxicity has been well-established, the understanding of how NOM molecular properties affect NOM corona composition remains elusive due to the complexity and heterogeneity of NOM. This is further complicated by the variation of NOMs from different origins.

View Article and Find Full Text PDF

The bioavailability of dissolved Pt(IV) and polyvinylpyrrolidone-coated platinum nanoparticles (PtNPs) of five different nominal hydrodynamic diameters (20, 30, 50, 75, and 95 nm) was characterized in laboratory experiments using the model freshwater snail . Dissolved Pt(IV) and all nanoparticle sizes were bioavailable to . Platinum bioavailability, inferred from conditional uptake rate constants, was greater for nanoparticulate than dissolved forms and increased with increasing nanoparticle hydrodynamic diameter.

View Article and Find Full Text PDF

Toxicity of methylmercury (MeHg) to wildlife and humans results from its binding to cysteine residues of proteins, forming MeHg-cysteinate (MeHgCys) complexes that hinder biological functions. MeHgCys complexes can be detoxified , yet how this occurs is unknown. We report that MeHgCys complexes are transformed into selenocysteinate [Hg(Sec)] complexes in multiple animals from two phyla (a waterbird, freshwater fish, and earthworms) sampled in different geographical areas and contaminated by different Hg sources.

View Article and Find Full Text PDF

Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) has been increasingly employed to characterize dissolved organic matter (DOM) across a range of aquatic environments highlighting the role of DOM in global carbon cycling. DOM analysis commonly utilizes electrospray ionization (ESI), while some have implemented other techniques, including dopant-assisted atmospheric pressure photoionization (APPI). We compared various extracted DOM compositions analyzed by negative ESI and positive APPI doped with both toluene and tetrahydrofuran (THF), including a fragmentation study of THF-doped riverine DOM using infrared multiple photon dissociation (IRMPD).

View Article and Find Full Text PDF

The transformations of aqueous inorganic divalent mercury (Hg(II)) to volatile dissolved gaseous mercury (Hg(0)) and toxic methylmercury (MeHg) govern mercury bioavailability and fate in northern ecosystems. This study quantified concentrations of aqueous mercury species (Hg(II), Hg(0), MeHg) and relevant geochemical constituents in pore waters of eight Alaskan wetlands that differ in trophic status (i.e.

View Article and Find Full Text PDF

Understanding the speciation of divalent mercury (Hg(II)) in aquatic systems containing dissolved organic matter (DOM) and sulfide is necessary to predict the conversion of Hg(II) to bioavailable methylmercury. We used X-ray absorption spectroscopy to characterize the structural order of mercury in Hg(II)-DOM-sulfide systems for a range of sulfide concentration (1-100 μM), DOM aromaticity (specific ultraviolet absorbance (SUVA)), and Hg(II)-DOM and Hg(II)-DOM-sulfide equilibration times (4-142 h). In all systems, Hg(II) was present as structurally disordered nanocolloidal metacinnabar (β-HgS).

View Article and Find Full Text PDF