Publications by authors named "Brett Pletschke"

Alginate, a polysaccharide found in brown seaweeds, has regularly gained attention for its potential use as a source of bioactive compounds. However, it is structurally complex with a high molecular weight, limiting its application. Alginate oligosaccharides (AOS) are small, soluble fragments, making them more bioavailable.

View Article and Find Full Text PDF

Introduction: Obesity is a chronic noncommunicable disease characterized by excessive body fat that can have negative health consequences. Obesity is a complex disease caused by a combination of genetic, environmental, and lifestyle factors. It is characterized by a discrepancy between caloric intake and expenditure.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: In recent times the decriminalisation of cannabis globally has increased its use as an alternative medication. Where it has been used in modern medicinal practises since the 1800s, there is limited scientific investigation to understand the biological activities of this plant.

Aim Of The Study: Dipeptidyl peptidase IV (DPP-IV) plays a key role in regulating glucose homeostasis, and inhibition of this enzyme has been used as a therapeutic approach to treat type 2 diabetes.

View Article and Find Full Text PDF

Xylanases from glycoside hydrolase (GH) families 10 and 11 are common feed additives for broiler chicken diets due to their catalytic activity on the nonstarch polysaccharide xylan. This study investigated the potential of an optimized binary GH10 and GH11 xylanase cocktail to mitigate the antinutritional effects of xylan on the digestibility of locally sourced chicken feed. Immunofluorescence visualization of the activity of the xylanase cocktail on xylan in the yellow corn of the feed showed a substantial collapse in the morphology of cell walls.

View Article and Find Full Text PDF

Poultry production faces several challenges, with feed efficiency being the main factor that can be influenced through the use of different nutritional strategies. Xylooligosaccharides (XOS) are functional feed additives that are attracting growing commercial interest due to their excellent ability to modulate the composition of the gut microbiota. The aim of the study was to apply crude and purified fungal xylanases, from as well as a recombinant glycoside hydrolase family 10 xylanase, derived from T6, as additives to locally produced chicken feeds.

View Article and Find Full Text PDF

Brown algae are gaining recognition as sources of bio-compounds with diverse properties and potential applications in the food, nutraceutical, and pharmaceutical industries. Compounds such as polyphenols, alginates and fucoidan possess multiple bioactivities, including antidiabetic, antioxidant, anticancer, anti-inflammatory, and antibacterial properties. Conventional extraction methods provide low yields, posing challenges for the industrial applications of biocompounds.

View Article and Find Full Text PDF

The endoxylanase XT6 produced by Geobacillus stearothermophilus is a desirable candidate for industrial applications. In this study, the gene encoding XT6 was cloned using the pET-28a expression vector and expressed in Escherichia coli BL21 (DE3) cells. Recombinant XT6 production was improved by optimizing cell lysis (sonication, chemical, and enzymatic lysis) and expression conditions.

View Article and Find Full Text PDF

Human colorectal cancer (CRC) is a recurrent, deadly malignant tumour with a high incidence. The incidence of CRC is of increasing alarm in highly developed countries, as well as in middle to low-income countries, posing a significant global health challenge. Therefore, novel management and prevention strategies are vital in reducing the morbidity and mortality of CRC.

View Article and Find Full Text PDF

Spent coffee ground (SCG), an agro-industrial waste, have a high content of polysaccharides such as mannan, making it ideal for utilisation for the production of nutraceutical oligosaccharides. Recently, there has been growing interest in the production of mannooligosaccharides (MOS) for health promotion in humans and animals. MOS are reported to exhibit various bioactive properties, including prebiotic and antioxidant activity.

View Article and Find Full Text PDF

Fungi are renowned for their ability to produce extracellular enzymes into their surrounding environment. Xylanases are hydrolytic enzymes capable of xylan degradation. The objectives of this study were to isolate, screen for potential xylanolytic fungi from soil and tree bark samples from three locations in South Africa and to determine their growth conditions for maximum xylanase production.

View Article and Find Full Text PDF

Xylanases are hydrolytic enzymes with a wide range of applications in several industries such as biofuels, paper and pulp, food, and feed. The objective of this study was to optimize the culture conditions and medium components for maximal xylanase production from a newly isolated Trichoderma harzianum strain using the Plackett-Burman Design (PBD) and Box Behnken Design (BBD) experimental strategies. Xylanase production was enhanced 4.

View Article and Find Full Text PDF

Fungal β-mannanases hydrolyze β-1, 4-glycosidic bonds of mannans and find application in the generation of mannose and prebiotic mannooligosaccharides (MOS). Previously, a MOS generating β-mannanase from Aspergillus oryzae MTCC 1846 (βManAo) was characterized and its structural and functional properties were unraveled through homology modeling and molecular dynamics in this study. The βManAo model was validated with 92.

View Article and Find Full Text PDF

Both β-mannanases and β-mannosidases are required for mannan-backbone degradation into mannose. In this study, two β-mannosidases of glycoside hydrolase (GH) families 2 (BtMan2A) and 5 (CmMan5A) were evaluated for their substrate specificities and galactomannan binding ability. BtMan2A preferred short -oligomers, while CmMan5A preferred longer ones; DP >2, and galactomannans.

View Article and Find Full Text PDF

Marine microorganisms represent virtually unlimited sources of novel biological compounds and can survive extreme conditions. Cellulases, a group of enzymes that are able to degrade cellulosic materials, are in high demand in various industrial and biotechnological applications, such as in the medical and pharmaceutical industries, food, fuel, agriculture, and single-cell protein, and as probiotics in aquaculture. The cellulosic biopolymer is a renewable resource and is a linearly arranged polysaccharide of glucose, with repeating units of disaccharide connected via β-1,4-glycosidic bonds, which are broken down by cellulase.

View Article and Find Full Text PDF

Although there are chemotherapeutic efforts in place for Type 2 diabetes mellitus (T2DM), there is a need for novel strategies (including natural products) to manage T2DM. Fucoidan, a sulphated polysaccharide was extracted from . The integrity of the fucoidan was confirmed by structural analysis techniques such as FT-IR, NMR and TGA.

View Article and Find Full Text PDF

Enzymes classified with the same Enzyme Commission (EC) that are allotted in different glycoside hydrolase (GH) families can display different mechanisms of action and substrate specificities. Therefore, the combination of different enzyme classes may not yield synergism during biomass hydrolysis, as the GH family allocation of the enzymes influences their behavior. As a result, it is important to understand which GH family combinations are compatible to gain knowledge on how to efficiently depolymerize biomass into fermentable sugars.

View Article and Find Full Text PDF

A growing demand in novel food products for well-being and preventative medicine has attracted global attention on nutraceutical prebiotics. Various plant agro-processes produce large amounts of residual biomass considered "wastes", which can potentially be used to produce nutraceutical prebiotics, such as manno-oligosaccharides (MOS). MOS can be produced from the degradation of mannan.

View Article and Find Full Text PDF

In this study, a GH26 endo-mannanase (Man26A) from an Aspergillus niger ATCC 10864 strain, with a molecular mass of 47.8 kDa, was cloned in a yBBH1 vector and expressed in Saccharomyces cerevisiae Y294 strain cells. Upon fractionation by ultra-filtration, the substrate specificity and substrate degradation pattern of the endo-mannanase (Man26A) were investigated using ivory nut linear mannan and two galactomannan substrates with varying amounts of galactosyl substitutions, guar gum and locust bean gum.

View Article and Find Full Text PDF

The gut microbiota in the human body is an important component that plays a pivotal role in the ability of the host to prevent diseases and recover from these diseases. If the human microbiome changes for any reason, it affects the overall functioning of the host. Healthy and vigorous gut microbiota require dietary fiber supplementation.

View Article and Find Full Text PDF

Catechol O-methyltransferase, an enzyme involved in the metabolism of catechol containing compounds, catalyzes the transfer of a methyl group between S-adenosylmethionine and the hydroxyl groups of the catechol. Furthermore it is considered a potential drug target for Parkinson's disease as it metabolizes the drug levodopa. Consequently inhibitors of the enzyme would increase levels of levodopa.

View Article and Find Full Text PDF

Cereal feedstocks have high arabinoxylan content as their main hemicellulose, which is linked to lignin by hydroxycinnamic acids such as ferulic acid. The ferulic acid is linked to arabinoxylan by ester bonds, and generally, the high substitution of ferulic acid leads to a loss of activity of xylanases targeting the arabinoxylan. In the current study, a feruloyl esterase (FAE-1) from a termite hindgut bacteria was functionally characterised and used in synergy with xylanases during xylan hydrolysis.

View Article and Find Full Text PDF

Fucoidans are complex polysaccharides derived from brown seaweeds which consist of considerable proportions of L-fucose and other monosaccharides, and sulphated ester residues. The search for novel and natural bioproduct drugs (due to toxicity issues associated with chemotherapeutics) has led to the extensive study of fucoidan due to reports of it having several bioactive characteristics. Among other fucoidan bioactivities, antidiabetic and anticancer properties have received the most research attention in the past decade.

View Article and Find Full Text PDF

The extracellular peroxidase from Streptomyces albidoflavus BSII#1 was purified to near homogeneity using sequential steps of acid and acetone precipitation, followed by ultrafiltration. The purified peroxidase was characterised and tested for the ability to catalyse coupling reactions between selected phenolic monomer pairs. A 46-fold purification of the peroxidase was achieved, and it was shown to be a 46 kDa haem peroxidase.

View Article and Find Full Text PDF

Cellulase cocktails formulated to degrade crystalline cellulose generally contain cellobiohydrolases (CBHs), referred to as CBHI (Cel7A) and CBHII (Cel6A), as the major constituents. The combined hydrolytic activities of CBHI and CBHII improve the release of fermentable sugars (β-1,4-cellobiose as the main product) from crystalline cellulose. In this study, a novel cellobiohydrolase (Exg-D) sourced from a metagenome of hindgut bacterial symbionts of a termite was heterologouly expressed, purified, and functionally characterised.

View Article and Find Full Text PDF

The inhibitory effect of eight model lignin derivatives (ferulic acid, guaiacol, kraft lignin (alkali, low sulfonate content), -coumaric acid, gallic acid, syringic acid, vanillin and vanillic acid) on XynA activity was evaluated. The model lignin derivatives viz. gallic acid, vanillic acid and vanillin were inhibitory to XynA activity, with an over 50% reduction in activity at concentrations as low as 0.

View Article and Find Full Text PDF