Population divergence leading to speciation is often explained by physical barriers causing allopatric distributions of historically connected populations. Environmental barriers have increasingly been shown to cause population divergence through local adaptation to distinct ecological characteristics. In this study, we evaluate population structuring and phylogeographic history within the Yucatán banded gecko Coleonyx elegans Gray 1845 to assess the role of both physical and environmental barriers in shaping the spatio-genetic distribution of a Mesoamerican tropical forest taxon.
View Article and Find Full Text PDFRecent integrative taxonomic studies of the agamid genus Acanthocercus Fitzinger, 1843 have shown that Angola harbors three different taxa, all within the Acanthocercus atricollis (Smith, 1849) species complexA. cyanocephalus (Falk, 1925) in the northeastern parts of the country, A. margaritae Wagner et al.
View Article and Find Full Text PDFThe Mohave Rattlesnake (Crotalus scutulatus) is a highly venomous pitviper inhabiting the arid interior deserts, grasslands, and savannas of western North America. Currently two subspecies are recognized: the Northern Mohave Rattlesnake (C. s.
View Article and Find Full Text PDFThere is a wealth of published information on the epibiont communities of sea turtles, yet many of these studies have exclusively sampled epibionts found only on the carapace. Considering that epibionts may be found on almost all body-surfaces and that it is highly plausible to expect different regions of the body to host distinct epibiont taxa, there is a need for quantitative information on the spatial variation of epibiont communities on turtles. To achieve this, we measured how total epibiont abundance and biomass on olive ridley turtles Lepidochelys olivacea varies among four body-areas of the hosts (n = 30).
View Article and Find Full Text PDF