Accurate predictions of the pathogenicity of mutations associated with genetic diseases are key to the success of precision medicine. Inherited missense mutations in the myocilin (MYOC) gene, within its olfactomedin (OLF) domain, constitute the strongest genetic link to primary open-angle glaucoma via a toxic gain of function, and thus MYOC is an attractive precision-medicine target. However, not all mutations in MYOC cause glaucoma, and common variants are expected to be neutral polymorphisms.
View Article and Find Full Text PDFMyocilin, a modular multidomain protein, is expressed broadly in the human body but is best known for its presence in the trabecular meshwork extracellular matrix, and myocilin misfolding is associated with glaucoma. Despite progress in comprehending the structure and misfolding of the myocilin olfactomedin domain, the structure and function of full-length myocilin, and contextual changes in glaucoma, remain unknown. Here we expressed and purified milligram-scale quantities of full-length myocilin from suspension mammalian cell culture (Expi293F), enabling molecular characterization in detail not previously accessible.
View Article and Find Full Text PDFRare variants of the olfactomedin domain of myocilin are considered causative for inherited, early-onset open-angle glaucoma, with a misfolding toxic gain-of-function pathogenic mechanism detailed by 20 years of laboratory research. Myocilin variants are documented in the scientific literature and identified through large-scale genetic sequencing projects such as those curated in the Genome Aggregation Database (gnomAD). In the absence of key clinical and laboratory information, however, the pathogenicity of any given variant is not clear, because glaucoma is a heterogeneous and prevalent age-onset disease, and common variants are likely benign.
View Article and Find Full Text PDF