Publications by authors named "Brett Leedahl"

Using inelastic X-ray scattering beyond the dipole limit and hard X-ray photoelectron spectroscopy we establish the dual nature of the U [Formula: see text] electrons in U[Formula: see text] (M = Pd, Ni, Ru, Fe), regardless of their degree of delocalization. We have observed that the compounds have in common a local atomic-like state that is well described by the U [Formula: see text] configuration with the [Formula: see text] and [Formula: see text] quasi-doublet symmetry. The amount of the U 5[Formula: see text] configuration, however, varies considerably across the U[Formula: see text] series, indicating an increase of U 5f itineracy in going from M = Pd to Ni to Ru and to the Fe compound.

View Article and Find Full Text PDF

The one-dimensional cobaltate Ca[Formula: see text]Co[Formula: see text]O[Formula: see text] is an intriguing material having an unconventional magnetic structure, displaying quantum tunneling phenomena in its magnetization. Using a newly developed experimental method, [Formula: see text]-core-level non-resonant inelastic x-ray scattering ([Formula: see text]-NIXS), we were able to image the atomic Co [Formula: see text] orbital that is responsible for the Ising magnetism in this system. We can directly observe that corrections to the commonly accepted ideal prismatic trigonal crystal field scheme occur in Ca[Formula: see text]Co[Formula: see text]O[Formula: see text], and it is the complex [Formula: see text] orbital occupied by the sixth electron at the high-spin Co[Formula: see text] ([Formula: see text]) sites that generates the Ising-like behavior.

View Article and Find Full Text PDF

Unknown changes in the crystalline order of regular TiO result in the formation of black titania, which has garnered significant interest as a photocatalytic material due to the accompanying electronic changes. Herein, the nature of the lattice distortion caused by an oxygen vacancy was determined that in turn results in the formation of mid-band-gap states found in previous studies of black titania. An innovative technique is introduced using a state-of-the-art silicon drift detector, which can be used in conjunction with extended X-ray absorption fine structure (EXAFS) to measure bulk interatomic distances.

View Article and Find Full Text PDF

Recently, V O nanowires have been synthesized as several different polymorphs, and as correlated bronzes with cations intercalated between the layers of edge- and corner- sharing VO octahedra. Unlike extended crystals, which tend to be plagued by substantial local variations in stoichiometry, nanowires of correlated bronzes exhibit precise charge ordering, thereby giving rise to pronounced electron correlation effects. These developments have greatly broadened the scope of research, and promise applications in several frontier electronic devices that make use of novel computing vectors.

View Article and Find Full Text PDF

New V2O5 polymorphs have risen to prominence as a result of their open framework structures, cation intercalation properties, tunable electronic structures, and wide range of applications. The application of these materials and the design of new, useful polymorphs requires understanding their defining structure-property relationships. We present a characterization of the band gap and electronic structure of nanowires of the novel ζ-phase and the orthorhombic α-phase of V2O5 using X-ray spectroscopy and density functional theory calculations.

View Article and Find Full Text PDF

This study reports a scalable and economical method to open a band gap in single layer graphene by deposition of cobalt metal on its surface using physical vapor deposition in high vacuum. At low cobalt thickness, clusters form at impurity sites on the graphene without etching or damaging the graphene. When exposed to oxygen at room temperature, oxygen functional groups form in proportion to the cobalt thickness that modify the graphene band structure.

View Article and Find Full Text PDF