The letters "Interpretation of the Outputs of Deep Learning Model trained with Skin Cancer Dataset" and "Automated Dermatological Diagnosis: Hype or Reality?" highlight the opportunities, hurdles, and possible pitfalls with the development of tools that allow for automated skin lesion classification. The potential clinical impact of these advances relies on their scalability, accuracy, and generalizability across a range of diagnostic scenarios.
View Article and Find Full Text PDFSkin cancer, the most common human malignancy, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional neural networks (CNNs) show potential for general and highly variable tasks across many fine-grained object categories.
View Article and Find Full Text PDF