Bacterial transduction particles were critical to early advances in molecular biology and are currently experiencing a resurgence in interest within the diagnostic and therapeutic fields. The difficulty of developing a robust and specific transduction reagent capable of delivering a genetic payload to the diversity of strains constituting a given bacterial species or genus is a major impediment to their expanded utility as commercial products. While recent advances in engineering the reactivity of these reagents have made them more attractive for product development, considerable improvements are still needed.
View Article and Find Full Text PDFCancer Immunol Immunother
November 2021
Cancer vaccines that utilize patient antigen-presenting cells to fight their own tumors have shown exciting promise in many preclinical studies, but have proven quite challenging to translate to clinical feasibility. Dendritic cells have typically been the cell of choice for such vaccine platforms, due to their ability to endocytose antigens nonspecifically, and their expression of multiple surface molecules that enhance antigen presentation. However, dendritic cells are present in low numbers in human peripheral blood and must be matured in culture before use in vaccines.
View Article and Find Full Text PDFModeling joint contact in OpenSim is not well understood. This study systematically investigated the variables associated with the elastic foundation contact model within OpenSim by performing a series of controlled benchtop experiment and concomitant simulations. Four metal-on-plastic interactions were modeled, including a model of a total knee replacement (TKR).
View Article and Find Full Text PDFMethods Mol Biol
May 2018
Chromatin immunoprecipitation is used to measure the binding of transcription factors to target DNA sequences in order to better understand transcriptional regulation. Here, we describe a process to analyze bacterial transcription factor binding in the context of an infected eukaryotic host cell. Using this approach, we measured the binding kinetics of three Chlamydia trachomatis transcription factors within infected cells, and demonstrated temporal changes in binding.
View Article and Find Full Text PDFIntracellular bacteria that reside within a host cell use a variety of strategies to exploit this unique niche. While these organisms are technically challenging to study in the context of an infected host cell, recent advances have led to an improved understanding of how the intracellular environment impacts bacterial gene expression. We recently demonstrated that chromatin immunoprecipitation (ChIP) can be used to quantify transcription factor binding in the obligate intracellular pathogen Chlamydia trachomatis within infected cells.
View Article and Find Full Text PDFThe adaptor protein TNF receptor-associated factor 3 (TRAF3) regulates signaling through B-lymphocyte receptors, including CD40, BAFF receptor, and Toll-like receptors, and also plays a critical role inhibiting B-cell homoeostatic survival. Consistent with these findings, loss-of-function human TRAF3 mutations are common in B-cell cancers, particularly multiple myeloma and B-cell lymphoma. B cells of B-cell-specific TRAF3(-/-) mice (B-Traf3(-/-)) display remarkably enhanced survival compared with littermate control (WT) B cells.
View Article and Find Full Text PDFUnlabelled: The Scc4 protein (CT663) of the pathogenic bacterium Chlamydia has been described as a type III secretion (T3S) chaperone as well as an inhibitor of RNA polymerase. To examine if these roles are connected, we first investigated physical interactions between Chlamydia trachomatis Scc4 and the T3S chaperone Scc1 and a T3S substrate, CopN. In a yeast 3-hybrid assay, Scc4, Scc1, and CopN were all required to detect an interaction, which suggests that these proteins form a trimolecular complex.
View Article and Find Full Text PDFBacteria encode heat shock proteins that aid in survival during stressful growth conditions. In addition, the major heat shock proteins of the intracellular bacterium Chlamydia trachomatis have been associated with immune pathology and disease. We developed a ChIP-qPCR method to study the regulation of chlamydial heat shock gene regulation during an intracellular infection.
View Article and Find Full Text PDFWe have developed a 4D computer-assisted reconstruction and motion analysis system, J3D-DIAS 4.1, and applied it to the reconstruction and motion analysis of tumorigenic cells in a 3D matrix. The system is unique in that it is fast, high-resolution, acquires optical sections using DIC microscopy (hence there is no associated photoxicity), and is capable of long-term 4D reconstruction.
View Article and Find Full Text PDFThe bacterial cell envelope is a crucial first line of defense for a systemic pathogen, with production of capsular polysaccharides and maintenance of the peptidoglycan cell wall serving essential roles in survival in the host environment. The LytR-CpsA-Psr proteins are important for cell envelope maintenance in many Gram-positive species. In this study, we examined the role of the extracellular domain of the CpsA protein of the zoonotic pathogen group B Streptococcus in capsule production and cell wall integrity.
View Article and Find Full Text PDFMutations in the tumor suppressor gene PTEN are associated with a significant proportion of human cancers. Because the human genome also contains several homologs of PTEN, we considered the hypothesis that if a homolog, functionally redundant with PTEN, can be overexpressed, it may rescue the defects of a PTEN mutant. We have performed an initial test of this hypothesis in the model system Dictyostelium discoideum, which contains an ortholog of human PTEN, ptenA.
View Article and Find Full Text PDFBackground: The accumulation of protein structural data occurs more rapidly than it can be characterized by traditional laboratory means. This has motivated widespread efforts to predict enzyme function computationally. The most useful/accurate strategies employed to date are based on the detection of motifs in novel structures that correspond to a specific function.
View Article and Find Full Text PDFBehavioral analyses of the deletion mutants of the four known myosin II heavy chain (Mhc) kinases of Dictyostelium discoideum revealed that all play a minor role in the efficiency of basic cell motility, but none play a role in chemotaxis in a spatial gradient of cAMP generated in vitro. However, the two kinases MhckA and MhckC were essential for chemotaxis in a spatial gradient of Ca(2+), shear-induced directed movement, and reorientation in the front of waves of cAMP during natural aggregation. The phenotypes of the mutants mhckA(-) and mhckC(-) were highly similar to that of the Ca(2+) channel/receptor mutant iplA(-) and the myosin II phosphorylation mutant 3XALA, which produces constitutively unphosphorylated myosin II.
View Article and Find Full Text PDFStreptococcal pathogens, such as the group B streptococcus (GBS) Streptococcus agalactiae, are an important cause of systemic disease, which is facilitated in part by the presence of a polysaccharide capsule. The CpsA protein is a putative transcriptional regulator of the capsule locus, but its exact contribution to regulation is unknown. To address the role of CpsA in regulation, full-length GBS CpsA and two truncated forms of the protein were purified and analyzed for DNA-binding ability.
View Article and Find Full Text PDFThe cell surface of Gram-positive pathogens represents a complex association of glycopolymers that control cell division, homeostasis, immune evasion, tissue invasion, and resistance to antimicrobials. These glycopolymers include the peptidoglycan cell wall, wall-teichoic acids, lipoteichoic acids, and capsular polysaccharide. Disruption of individual factors often results in pleiotropic effects, making it difficult to discern regulation and function.
View Article and Find Full Text PDFMany streptococcal pathogens require a polysaccharide capsule for survival in the host during systemic infection. The highly conserved CpsA protein is proposed to be a transcriptional regulator of capsule production in streptococci, although the regulatory mechanism is unknown. Hydropathy plots of CpsA predict an integral membrane protein with 3 transmembrane domains and only 27 cytoplasmic residues, whereas other members of the LytR_cpsA_psr protein family are predicted to have a single transmembrane domain.
View Article and Find Full Text PDF