Models of insulin secretory vesicles from pancreatic beta cells have been created using the cellPACK suite of tools to research, curate, construct and visualise the current state of knowledge. The model integrates experimental information from proteomics, structural biology, cryoelectron microscopy and X-ray tomography, and is used to generate models of mature and immature vesicles. A new method was developed to generate a confidence score that reconciles inconsistencies between three available proteomes using expert annotations of cellular localisation.
View Article and Find Full Text PDFHuntington's disease (HD) is caused by an expansion of a poly glutamine (polyQ) stretch in the huntingtin protein (HTT) that is necessary to cause pathology and formation of HTT aggregates. Here we ask whether expanded polyQ is sufficient to cause pathology and aggregate formation. By addressing the sufficiency question, one can identify cellular processes and structural parameters that influence HD pathology and HTT subcellular behavior (i.
View Article and Find Full Text PDFIEEE Comput Graph Appl
July 2019
CellPAINT allows nonexpert users to create interactive mesoscale illustrations that integrate a variety of biological data. Like popular digital painting software, scenes are created using a palette of molecular "brushes." The current release allows creation of animated scenes with an HIV virion, blood plasma, and a simplified T-cell.
View Article and Find Full Text PDFFlies, worms, yeast and more recently zebra fish have all been engineered to express expanded polyglutamine repeat versions of Huntingtin with various resulting pathologies including early death, neurodegeneration, and loss of motor function. Each of these models present particular features that make it useful in studying the mechanisms of polyglutamine pathology. However, one particular unbiased readout of mHTT pathology is functional loss of motor control.
View Article and Find Full Text PDFAccumulation of N-terminal fragments of mutant huntingtin (mHTT) in the cytoplasm, nuclei and axons of neurons is a hallmark of Huntington's disease (HD), although how these fragments negatively impact neurons remains unclear. We followed the distribution of mHTT in the striata of transgenic R6/2-J2 HD mice as their motor function declined. The fraction of cells with diffuse, perinuclear or intranuclear mHTT changed in parallel with decreasing motor function.
View Article and Find Full Text PDFAlthough Huntington's disease is caused by the expansion of a CAG triplet repeat within the context of the 3144-amino acid huntingtin protein (HTT), studies reveal that N-terminal fragments of HTT containing the expanded PolyQ region can be produced by proteolytic processing and/or aberrant splicing. N-terminal HTT fragments are also prevalent in postmortem tissue, and expression of some of these fragments in model organisms can cause pathology. This has led to the hypothesis that N-terminal peptides may be critical modulators of disease pathology, raising the possibility that targeting aberrant splicing or proteolytic processing may present attractive therapeutic targets.
View Article and Find Full Text PDFProtein acetylation, which is central to transcriptional control as well as other cellular processes, is disrupted in Huntington's disease (HD). Treatments that restore global acetylation levels, such as inhibiting histone deacetylases (HDACs), are effective in suppressing HD pathology in model organisms. However, agents that selectively target the disease-relevant HDACs have not been available.
View Article and Find Full Text PDFHuntington's disease (HD) is an autosomal dominant neurodegenerative disorder. The HD gene encodes the huntingtin protein (HTT) that contains polyglutamine tracts of variable length. Expansions of the CAG repeat near the amino terminus to encode 40 or more glutamines (polyQ) lead to disease.
View Article and Find Full Text PDFThe simian virus 40 (SV40) in vitro replication system was previously used to demonstrate that the human polymerase (Pol) alpha-primase complex preferentially initiates DNA synthesis at pyrimidine-rich trinucleotide sequences. However, it has been reported that under certain conditions, nucleoside triphosphate (NTP) concentrations play a critical role in determining where eukaryotic primase initiates synthesis. Therefore, we have examined whether increased NTP concentrations alter the template locations at which SV40 replication is initiated.
View Article and Find Full Text PDF