Ultrasound enhancing agents are approved to delineate the endocardial border and opacify the left ventricle cavity (LVC). We present a nested phase change agent (NPCA) designed to enable selective myocardial enhancement without enhancing the LVC by employing a dual-activation mechanism dependent on sufficient ultrasound intensity and the microenvironment of the myocardium. Swine received bolus injections of NPCA while echocardiograms were collected and processed to determine background-subtracted acoustic intensities (AI) in the LVC and septal myocardium.
View Article and Find Full Text PDFThe nonlinear acoustic properties of microbubble ultrasound enhancing agents have allowed for the development of subharmonic, second harmonic, and contrast-pulse sequence ultrasound imaging modes, which enhance the quality, reduce the noise, and improve the diagnostic capabilities of clinical ultrasound. This study details acoustic scattering responses of perfluorobutane (PFB) microbubbles, an un-nested perfluoropentane (PFP) nanoemulsion, and two nested PFP nanoemulsions-one comprising a negatively charged phospholipid bilayer and another comprising a zwitterionic phospholipid bilayer-when excited at 1 or 2.25 MHz over a peak negative pressure range of 200 kPa to 4 MPa in the absence and presence of a 1-Hz, 1-V/cm electric field.
View Article and Find Full Text PDFEchocardiographers with specialized expertise sometimes perform myocardial perfusion imaging using U.S. Food and Drug Administration-approved microbubbles in an off-label capacity, correlating microbubble replenishment in the near field with blood flow through the myocardium.
View Article and Find Full Text PDFPurpose Of Review: Medical devices have become an integral part of comprehensive heart failure management. Not all heart failure patients, however, accrue benefit from every new device, and even with extensive practice guidelines, this remains an evolving field.
Recent Findings: The addition of implantable devices, like internal cardioverter defibrillators (ICDs), and novel pacing technologies, including cardiac resynchronization therapy (CRT), have helped to compliment goal-directed medical therapy and positively impact prognosis in multiple high-quality clinical trials.