Publications by authors named "Brett Adair"

Context: Chromosomal abnormalities (namely 13q, 17p, and 11q deletions) have prognostic implications and are recurrent in chronic lymphocytic leukemia (CLL), suggesting that they are involved in a common pathogenetic pathway; however, the molecular mechanism through which chromosomal abnormalities affect the pathogenesis and outcome of CLL is unknown.

Objective: To determine whether the microRNA miR-15a/miR-16-1 cluster (located at 13q), tumor protein p53 (TP53, located at 17p), and miR-34b/miR-34c cluster (located at 11q) are linked in a molecular pathway that explains the pathogenetic and prognostic implications (indolent vs aggressive form) of recurrent 13q, 17p, and 11q deletions in CLL.

Design, Setting, And Patients: CLL Research Consortium institutions provided blood samples from untreated patients (n = 206) diagnosed with B-cell CLL between January 2000 and April 2008.

View Article and Find Full Text PDF

An inflammatory component is present in the microenvironment of most neoplastic tissues, including those not causally related to an obvious inflammatory process. Several microRNAs, and especially miR-155, play an essential role in both the innate and adaptative immune response. Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural antioxidant with anti-inflammatory properties that is currently at the stage of preclinical studies for human cancer prevention.

View Article and Find Full Text PDF

Inactivation of mismatch repair (MMR) is the cause of the common cancer predisposition disorder Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer (HNPCC), as well as 10-40% of sporadic colorectal, endometrial, ovarian, gastric, and urothelial cancers. Elevated mutation rates (mutator phenotype), including simple repeat instability [microsatellite instability (MSI)] are a signature of MMR defects. MicroRNAs (miRs) have been implicated in the control of critical cellular pathways involved in development and cancer.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAM) are implicated in breast cancer metastasis, but relatively little is known about the underlying genes and pathways that are involved. The transcription factor Ets2 is a direct target of signaling pathways involved in regulating macrophage functions during inflammation. We conditionally deleted Ets in TAMs to determine its function at this level on mouse mammary tumor growth and metastasis.

View Article and Find Full Text PDF

Cancer is a genetic and epigenetic disease. MicroRNAs (miRNAs), a class of small noncoding RNAs, have been shown to be deregulated in many diseases including cancer. An intertwined connection between epigenetics and miRNAs has been supported by the recent identification of a specific subgroup of miRNAs called "epi-miRNAs" that can directly and indirectly modulate the activity of the epigenetic machinery.

View Article and Find Full Text PDF

We report here that miR-155 and miR-125b play a role in innate immune response. LPS stimulation of mouse Raw 264.7 macrophages resulted in the up-regulation of miR-155 and down-regulation of miR-125b levels.

View Article and Find Full Text PDF