P2X7 receptors are important in the regulation of inflammatory responses and immune responses to intracellular pathogens such as Mycobacterium tuberculosis and Toxoplasma gondii. Enhancement of P2X7 receptor responses may be useful in pathogen clearance particularly in individuals with defective microbial killing mechanisms. Ginsenosides from Panax ginseng have been discovered to act as positive allosteric modulators of P2X7.
View Article and Find Full Text PDFWe investigated the selectivity of protopanaxadiol ginsenosides from acting as positive allosteric modulators on P2X receptors. ATP-induced responses were measured in stable cell lines overexpressing human P2X4 using a YOPRO-1 dye uptake assay, intracellular calcium measurements, and whole-cell patch-clamp recordings. Ginsenosides CK and Rd were demonstrated to enhance ATP responses at P2X4 by ∼twofold, similar to potentiation by the known positive modulator ivermectin.
View Article and Find Full Text PDFCl channel protein 1 (ClC-1) may be important for excitability and contractility in skeletal muscle, but ClC-1 abundance has not been examined in human muscle. The aim of the present study was to examine ClC-1 abundance in human skeletal muscle, including fiber type specific differences and the effect of exercise training. A commercially available antibody was tested with positive and negative control tissue, and it recognized specifically ClC-1 in the range from 100 to 150 kDa.
View Article and Find Full Text PDFIn meso crystallization of membrane proteins from lipidic mesophases is central to protein structural biology but limited to membrane proteins with small extracellular domains (ECDs), comparable to the water channels (3-5 nm) of the mesophase. Here we present a strategy expanding the scope of in meso crystallization to membrane proteins with very large ECDs. We combine monoacylglycerols and phospholipids to design thermodynamically stable ultra-swollen bicontinuous cubic phases of double-gyroid (Ia3d), double-diamond (Pn3m), and double-primitive (Im3m) space groups, with water channels five times larger than traditional lipidic mesophases, and showing re-entrant behavior upon increasing hydration, of sequences Ia3d→Pn3m→Ia3d and Pn3m→Im3m→Pn3m, unknown in lipid self-assembly.
View Article and Find Full Text PDFPentameric ligand-gated ion channels control synaptic neurotransmission by converting chemical signals into electrical signals. Agonist binding leads to rapid signal transduction via an allosteric mechanism, where global protein conformational changes open a pore across the nerve cell membrane. We use all-atom molecular dynamics with a swarm-based string method to solve for the minimum free-energy gating pathways of the proton-activated bacterial GLIC channel.
View Article and Find Full Text PDFGABAA receptors are pentameric ligand-gated ion channels that mediate inhibitory fast synaptic transmission in the central nervous system. Consistent with recent pentameric ligand-gated ion channels structures, sequence analysis predicts an α-helix near the N-terminus of each GABAA receptor subunit. Preceding each α-helix are 8-36 additional residues, which we term the N-terminal extension.
View Article and Find Full Text PDFGlutamate is an indispensable neurotransmitter, triggering postsynaptic signals upon recognition by postsynaptic receptors. We questioned the phylogenetic position and the molecular details of when and where glutamate recognition arose in the glutamate-gated chloride channels. Experiments revealed that glutamate recognition requires an arginine residue in the base of the binding site, which originated at least three distinct times according to phylogenetic analysis.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
December 2014
Pharmacological targeting of glutamate-gated chloride channels (GluCls) is a potent anthelmintic strategy, evidenced by macrocyclic lactones that eliminate numerous roundworm infections by activating roundworm GluCls. Given the recent identification of flatworm GluCls and the urgent need for drugs against schistosomiasis, flatworm GluCls should be evaluated as potential anthelmintic targets. This study sought to identify agonists or modulators of one such GluCl, SmGluCl-2 from the parasitic flatworm Schistosoma mansoni.
View Article and Find Full Text PDFACS Chem Neurosci
December 2014
The GABAC receptor and closely related GABAA receptor are members of the pentameric ligand-gated ion channels (pLGICs) superfamily and mediate inhibitory fast synaptic transmission in the nervous system. Each pLGIC subunit comprises an N-terminal extracellular agonist-binding domain followed by a channel domain and a variable intracellular domain. Available structural information shows that the core of the agonist-binding domain is a β sandwich of ten β-strands, which form the agonist-binding pocket at the subunit interface.
View Article and Find Full Text PDFCommon to all of the nitrate nitrite porter family are two conserved motifs in transmembrane helices 5 and 11 termed NS (nitrate signature) 1 and NS2. Although perfectly conserved substrate-interacting arginine residues have been described in transmembrane helices 2 and 8, the role of NSs has not been investigated. In the present study, a combination of structural modelling of NrtA (nitrate transporter from Aspergillus nidulans) with alanine scanning mutagenesis of residues within and around the NSs has been used to shed light on the probable role of conserved residues in the NSs.
View Article and Find Full Text PDFThe P2X4 receptor is involved in endothelium-dependent changes in large arterial tone in response to shear stress and is, therefore, potentially relevant to arterial compliance and pulse pressure. Four identified nonsynonymous polymorphisms in P2RX4 were reproduced in recombinantly expressed human P2X4. Electrophysiological studies showed that one of these, the Tyr315>Cys mutation (rs28360472), significantly reduced the peak amplitude of the ATP-induced inward current to 10.
View Article and Find Full Text PDFIvermectin is an anthelmintic drug that works by activating glutamate-gated chloride channel receptors (GluClRs) in nematode parasites. GluClRs belong to the Cys-loop receptor family that also includes glycine receptor (GlyR) chloride channels. GluClRs and A288G mutant GlyRs are both activated by low nanomolar ivermectin concentrations.
View Article and Find Full Text PDFAmiloride and its derivative 5-(N-ethyl-N-isopropyl)amiloride (EIPA) were previously shown to inhibit coxsackievirus B3 (CVB3) RNA replication in cell culture, with two amino acid substitutions in the viral RNA-dependent RNA polymerase 3D(pol) conferring partial resistance of CVB3 to these compounds (D. N. Harrison, E.
View Article and Find Full Text PDFThe development of inhibitors of insulin-regulated aminopeptidase (IRAP), a membrane-bound zinc metallopeptidase, is a promising approach for the discovery of drugs for the treatment of memory loss such as that associated with Alzheimer's disease. There is, however, no consensus in the literature about the mechanism by which inhibition occurs. Sequence alignments, secondary structure predictions, and homology models based on the structures of recently determined related metallopeptidases suggest that the extracellular region consists of four domains.
View Article and Find Full Text PDFA series of 3,6-disubstituted β-carbolines was synthesized and evaluated for their in vitro affinities at α(x)β(3)γ(2) GABA(A)/benzodiazepine receptor subtypes by radioligand binding assays in search of α(1) subtype selective ligands to treat alcohol abuse. Analogues of β-carboline-3-carboxylate-t-butyl ester (βCCt, 1) were synthesized via a CDI-mediated process and the related 6-substituted β-carboline-3-carboxylates 6 including WYS8 (7) were synthesized via a Sonogashira or Stille coupling processes from 6-iodo-βCCt (5). The bivalent ligands of βCCt (32 and 33) were also designed and prepared via a palladium-catalyzed homocoupling process to expand the structure-activity relationships (SAR) to larger ligands.
View Article and Find Full Text PDFFebrile seizures are a common childhood seizure disorder and a defining feature of genetic epilepsy with febrile seizures plus (GEFS+), a syndrome frequently associated with Na+ channel mutations. Here, we describe the creation of a knockin mouse heterozygous for the C121W mutation of the beta1 Na+ channel accessory subunit seen in patients with GEFS+. Heterozygous mice with increased core temperature displayed behavioral arrest and were more susceptible to thermal challenge than wild-type mice.
View Article and Find Full Text PDFThe genetic architecture of common epilepsies is largely unknown. HCNs are excellent epilepsy candidate genes because of their fundamental neurophysiological roles. Screening in subjects with febrile seizures and genetic epilepsy with febrile seizures plus revealed that 2.
View Article and Find Full Text PDFJ Neurochem
September 2009
beta-Carbolines are potent modulators of GABA type A receptors and they have recently been shown to inhibit glycine receptors in a subunit-specific manner. The present study screened four structurally similar beta-carbolines, 1,2,3,4-tetrahydronorharmane, norharmane, harmane and 6-methoxyharmalan, at recombinantly expressed alpha1, alpha1beta, alpha2 and alpha3 glycine receptors with the aims of identifying structural elements of both the receptor and the compounds that are important for binding and subunit specificity. The four compounds exhibited only weak subunit specificity, rendering them unsuitable as pharmacological probes.
View Article and Find Full Text PDFMany plant and animal toxins cause aversive behaviors in animals due to their pungent or unpleasant taste or because they cause other unpleasant senstations like pain. This article reviews the current state of knowledge of toxins that act at the TRPV1 ion channel, which is expressed in primary sensory neurons, is activated by multiple painful stimuli and is thought to be a key pain sensor and integrator. The recent finding that painful peptide "vanillotoxin" components of tarantula toxin activate the TRPV1 ion channel to cause pain led us to survey what is known about toxins that act at this receptor.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
November 2007
The chloride intracellular channel (CLIC) family of proteins are unusual in that they can exist in either an integral membrane-channel form or a soluble form. Here, the expression, purification, crystallization and preliminary diffraction analysis of CLIC2, one of the least-studied members of this family, are reported. Human CLIC2 was crystallized in two different forms, both in the presence of reduced glutathione and both of which diffracted to better than 1.
View Article and Find Full Text PDFChloride intracellular channel (CLIC) proteins possess the remarkable property of being able to convert from a water-soluble state to a membrane channel state. We determined the three-dimensional structure of human CLIC2 in its water-soluble form by X-ray crystallography at 1.8-A resolution from two crystal forms.
View Article and Find Full Text PDFSkeletal muscle acidosis during exercise has long been thought to be a cause of fatigue, but recent studies have shown that acidosis maintains muscle excitability and opposes fatigue by decreasing the sarcolemmal chloride conductance. ClC-1 is the primary sarcolemmal chloride channel and has a clear role in controlling muscle excitability, but recombinant ClC-1 has been reported to be activated by acidosis. Following our recent finding that intracellular ATP inhibits ClC-1, we investigated here the interaction between pH and ATP regulation of ClC-1.
View Article and Find Full Text PDFThe 5-hydroxytryptamine type-3 receptor antagonist tropisetron is in clinical use as an anti-emetic drug. This compound also exerts both potentiating and inhibitory effects on the glycine receptor chloride channel. The inhibitory effects occur at micromolar concentrations, whereas the potentiating effects are shown here to occur at femtomolar concentrations at the homomeric alpha1 receptor.
View Article and Find Full Text PDFGinkgolides are potent blockers of the glycine receptor Cl- channel (GlyR) pore. We sought to identify their binding sites by comparing the effects of ginkgolides A, B and C and bilobalide on alpha1, alpha2, alpha1beta and alpha2beta GlyRs. Bilobalide sensitivity was drastically reduced by incorporation of the beta subunit.
View Article and Find Full Text PDF