Background: Environmental DNA (eDNA) is the DNA that can be extracted from an environmental sample, enabling the monitoring of whole biological communities across a large number of samples, at a potentially lower cost, which can significantly benefit river conservation. A systematic mapping protocol was designed to investigate the use of eDNA in rivers, specifically in terms of research topics, geographic and taxonomic biases, as well as information gaps. Furthermore, the potential research opportunities of eDNA in rivers and possible paths to find this kind of information on available platforms are identified.
View Article and Find Full Text PDFDue to the rapid expansion of industrial activity, soil pollution has intensified. Plants growing in these polluted areas have developed a rhizobiome uniquely and specially adapted to thrive in such environments. However, it remains uncertain whether pollution acts as a sufficiently selective force to shape the rhizobiome, and whether these adaptations endure over time, potentially aiding in long-term phytoremediation.
View Article and Find Full Text PDFThe application of machine learning (ML) techniques stands as a reliable method for aiding in the diagnosis of complex diseases. Recent studies have related the composition of the gut microbiota to the presence of autism spectrum disorder (ASD), but until now, the results have been mostly contradictory. This work proposes using machine learning to study the gut microbiome composition and its role in the early diagnosis of ASD.
View Article and Find Full Text PDFBacterial degradation of crude oil is a promising strategy for reducing the concentration of hydrocarbons in contaminated environments. In the first part of this study, we report the enrichment of two bacterial consortia from deep sediments of the Gulf of Mexico with crude oil as the sole carbon and energy source. We conducted a comparative analysis of the bacterial community in the original sediment, assessing its diversity, and compared it to the enrichment observed after exposure to crude oil in defined cultures.
View Article and Find Full Text PDFAs a result of mining activities, waste of different types is generated. One example is mine tailings that contain potentially toxic elements such as heavy metals that negatively impact the environment and human health. Hence, developing treatments to guarantee its efficient elimination from the environment is necessary.
View Article and Find Full Text PDFMethanobacterium paludis is a hydrogenotrophic archaea first described in 2014 and isolated from a peatland area. So far, there is only one sequenced genome of this taxon. Here, we report the draft genome sequence of IBT-C12, a metagenome-assembled genome (MAG) from sediments in the Apatlaco River, Mexico.
View Article and Find Full Text PDFMicrobial biodiversity is represented by a variety of genomic landscapes adapted to dissimilar environments on Earth. These genomic landscapes contain functional signatures connected with the community phenotypes. Here, we assess the genomic microbial diversity landscape at a high-resolution level of a polluted river-associated microbiome (Morelos, México), cultured in a medium enriched with anthraquinone Deep Blue 35 dye.
View Article and Find Full Text PDFObjectives: In order to characterize a river-associated, enriched microbiome capable of degrading an anthraquinone dye from the oil blue family, as well as assessing its functional potential, we performed a taxa-specific metagenomic deconvolution analysis based on contact probability maps at the chromosomal level. This study will allow associating the genomic content of "Candidatus Afipia apatlaquensis" strain IBT-C3 with its phenotypic potential in the context of bioremediation of textile dyes. We anticipate that this resource will be very useful in comparative genomic clinical studies, contributing to understanding the genomic basis of Afipia pathogenicity.
View Article and Find Full Text PDFThe purpose of this work was to produce iron nanoparticles (Fe-NP) by microbial pathway from anaerobic bacteria grown in anaerobic fluidized bed reactors (AnFBRs) that constitute a new stage of a waste-based biorefinery. Bioparticles from biological fluidized bed reactors from a biorefinery of organic fraction of municipal solid wastes (that produces hydrolysates rich in reducing sugars) were nanodecorated (embedded nanobioparticle or nanodecorated bioparticle, ENBP) by biological reduction of iron salts. Factors "origin of bioparticles" (either from hydrogenogenic or methanogenic fluidized bed reactor) and "type of iron precursor salt" (iron chloride or iron citrate) were explored.
View Article and Find Full Text PDFThe objective of this study is to understand the functional and metabolic potential of the microbial communities along the Apatlaco River and highlight activities related to bioremediation and its relationship with the Apatlaco's pollutants, to enhance future design of more accurate bioremediation processes. Water samples were collected at four sampling sites along the Apatlaco River (S1-S4) and a whole metagenome shotgun sequencing was performed to survey and understand the microbial metabolic functions with potential for bioremediation. A HMMER search was used to detect sequence homologs related to polyethylene terephthalate (PET) and polystyrene biodegradation, along with bacterial metal tolerance in Apatlaco River metagenomes.
View Article and Find Full Text PDFThe increasing demand for clean water resources for human consumption, is raising concerning about the sustainable worldwide provisioning. In Mexico, rivers near to high-density urbanizations are subject to irrational exploitation where polluted water is a risk for human health. Therefore, the aims of this study are to analyze water quality parameters and bacterial community dynamics to understand the relation between them, in the Apatlaco river, which presents a clear environmental perturbance.
View Article and Find Full Text PDFJ Environ Manage
October 2018
Agave tequilana bagasse is the main solid waste of the tequila manufacturing and represents an environmental issue as well as a potential feedstock for biofuel production due to its lignocellulosic composition and abundance. In this contribution, this feedstock was subjected to pretreatments with HCl and HSO for sugar recovery and methane was produced from the hydrolysates in batch and sequencing batch reactors (AnSBR). Sugar recovery was optimized by using central composite designs at different levels of temperature, acid concentration and hydrolysis time.
View Article and Find Full Text PDFThe objective of this work was to evaluate the degradation of the nonionic surfactant Tween 80 by a PCE-degrading consortium anchored in bioparticles of fluidized bed bioreactors used in onsite remediation. Batch lab-scale bioreactors were set with dominant denitrifying (DN), methanogenic (M), and aerobic (Ab) metabolisms. Tween 80 at 100 mg/L was the sole source of carbon and energy.
View Article and Find Full Text PDFThe present work evaluated the effects of (i) feeding a water contaminated with 80 mg/L PCE to bioreactors seeded with inoculum not acclimated to PCE, (ii) coupling ZVI side filters to bioreactors, and (iii) working in different biological regimes, i.e., simultaneous methanogenic aeration and simultaneous methanogenic-denitrifying regimes, on fluidized bed bioreactor performance.
View Article and Find Full Text PDF