Hummingbirds routinely execute a variety of stunning aerobatic feats, which continue to challenge current notions of aerial agility and controlled stability in biological systems. Indeed, the control of these amazing manoeuvres is not well understood. Here, we examined how hummingbirds control a sequence of manoeuvres within milliseconds, and tested whether and when they use vision during this rapid process.
View Article and Find Full Text PDFWhen a hovering hummingbird performs a rapid escape manoeuvre in response to a perceived threat from the front side, its body may go through simultaneous pitch, yaw and roll rotations. In this study, we examined the inertial coupling of the three-axis body rotations and its effect on the flight mechanics of the manoeuvre using analyses of high-speed videos as well as high-fidelity computational modelling of the aerodynamics and inertial forces. We found that while a bird's pitch-up was occurring, inertial coupling between yaw and roll helped slow down and terminate the pitch, thus serving as a passive control mechanism for the manoeuvre.
View Article and Find Full Text PDFBird flight is often characterized by outstanding aerodynamic efficiency, agility and adaptivity in dynamic conditions. Feathers play an integral role in facilitating these aspects of performance, and the benefits feathers provide largely derive from their intricate and hierarchical structures. Although research has been attempted on developing membrane-type artificial feathers for bio-inspired aircraft and micro air vehicles (MAVs), fabricating anatomically accurate artificial feathers to fully exploit the advantages of feathers has not been achieved.
View Article and Find Full Text PDFComplex hydrodynamics abound in natural streams, yet the selective pressures these impose upon different size classes of fish are not well understood. Attached vortices are produced by relatively large objects that block freestream flow, which fish routinely utilize for flow refuging. To test how flow refuging and the potential harvesting of energy (as seen in Kármán gaiting) vary across size classes in rainbow trout (Oncorhynchus mykiss; fingerling, 8 cm; parr, 14 cm; adult, 22 cm; n=4 per size class), we used a water flume (4100 l; freestream flow at 65 cm s-1) and created vortices using 45 deg wing dams of varying size (small, 15 cm; medium, 31 cm; large, 48 cm).
View Article and Find Full Text PDFAvian takeoff requires peak pectoralis muscle power to generate sufficient aerodynamic force during the downstroke. Subsequently, the much smaller supracoracoideus recovers the wing during the upstroke. How the pectoralis work loop is tuned to power flight is unclear.
View Article and Find Full Text PDFDomestic laying hens rely primarily on their hindlimbs for terrestrial locomotion. Although they perform flapping flight, they appear to use maximal power during descent and thus may lack control for maneuvering and avoiding injuries on landing. This in turn may result in injury in open rearing systems.
View Article and Find Full Text PDFIn flying birds, the pectoralis (PECT) and supracoracoideus (SUPRA) generate most of the power required for flight, while the wing feathers create the aerodynamic forces. However, in domestic laying hens, little is known about the architectural properties of these muscles and the forces the wings produce. As housing space increases for commercial laying hens, understanding these properties is important for assuring safe locomotion.
View Article and Find Full Text PDFHummingbirds outperform other birds in terms of aerial agility at low flight speeds. To reveal the key mechanisms that enable such unparalleled agility, we reconstructed body and wing motion of hummingbird escape manoeuvres from high-speed videos; then, we performed computational fluid dynamics modelling and flight mechanics analysis, in which the time-dependent forces within each wingbeat were resolved. We found that the birds may use the inertia of their wings to achieve peak body rotational acceleration around wing reversal when the aerodynamic forces were small.
View Article and Find Full Text PDFThermoregulatory performance can be modified through changes in various subordinate traits, but the rate and magnitude of change in these traits is poorly understood. We investigated flexibility in traits that affect thermal balance between black-capped chickadees (Poecile atricapillus) acclimated for 6 weeks to cold (-5°C) or control (23°C) environments (n=7 per treatment). We made repeated measurements of basal and summit metabolic rates via flow-through respirometry and of body composition using quantitative magnetic resonance of live birds.
View Article and Find Full Text PDFPrevious studies suggested that wing pitching, i.e. the wing rotation around its long axis, of insects and hummingbirds is primarily driven by an inertial effect associated with stroke deceleration and acceleration of the wings and is thus passive.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
August 2023
The evolution of nest site use and nest architecture in the non-avian ancestors of birds remains poorly understood because nest structures do not preserve well as fossils. Nevertheless, the evidence suggests that the earliest dinosaurs probably buried eggs below ground and covered them with soil so that heat from the substrate fuelled embryo development, while some later dinosaurs laid partially exposed clutches where adults incubated them and protected them from predators and parasites. The nests of euornithine birds-the precursors to modern birds-were probably partially open and the neornithine birds-or modern birds-were probably the first to build fully exposed nests.
View Article and Find Full Text PDFBirds use their legs and wings when transitioning from aerial to ground locomotion during landing. To improve our understanding of the effects of footpad dermatitis (FPD) and keel bone fracture (KBF) upon landing biomechanics in laying hens, we measured ground-reaction forces generated by hens (n = 37) as they landed on force plates (Bertec Corporation, Columbus, OH) from a 30 cm drop or 170 cm jump in a single-blinded placebo-controlled trial using a cross-over design where birds received an anti-inflammatory (meloxicam, 5 mg/kg body mass) or placebo treatment beforehand. We used generalized linear mixed models to test for effects of health status, treatment and their interaction on landing velocity (m/s), maximum resultant force (N), and impulse (force integrated with respect to time [N s]).
View Article and Find Full Text PDFA huge amount of research attention has focused on the evolution of life histories, but most research focuses on dominant individuals that acquire a disproportionate level of reproductive success, while the life histories and reproductive tactics of subordinate individuals have received less attention. Here, we review the links between early life adversity and performance during adulthood in birds, and highlight instances in which subordinate individuals outperform dominant conspecifics. Subordinate individuals are those from broods raised under high risk of predation, with low availability of food, and/or with many parasites.
View Article and Find Full Text PDFFor reproducing animals, maintaining energy balance despite thermoregulatory challenges is important for surviving and successfully raising offspring. This is especially apparent in small endotherms that exhibit high mass-specific metabolic rates and live in unpredictable environments. Many of these animals use torpor, substantially reducing their metabolic rate and often body temperature to cope with high energetic demands during non-foraging periods.
View Article and Find Full Text PDFDomestic chickens may live in environments which restrict wing muscle usage. Notably, reduced wing activity and accompanying muscle weakness are hypothesized risk factors for keel bone fractures and deviations. We used radio-frequency identification (RFID) to measure duration spent at elevated resources (feeders, nest-boxes), ultrasonography to measure muscle thickness (breast and lower leg) changes, radiography and palpation to determine fractures and deviations, respectively, following no, partial (one-sided wing sling) and full (cage) immobilization in white- and brown-feathered birds.
View Article and Find Full Text PDFHummingbirds have evolved to hover and manoeuvre with exceptional flight control. This is enabled by their musculoskeletal system that successfully exploits the agile motion of flapping wings. Here, we synthesize existing empirical and modelling data to generate novel hypotheses for principles of hummingbird wing actuation.
View Article and Find Full Text PDFMuch of the awe that humans have for the flight of birds derives from our earthbound habits and our bias toward emphasizing visual cues for interpreting processes in the world. Although we move through it and breathe it, air is vastly less dense than our bodies, so it is fanciful to imagine moving our limbs in a manner that would enable us to support our weight in the air. Moreover, air is invisible to us unless we use special tools to reveal its flow patterns.
View Article and Find Full Text PDFBiomimetics (Basel)
August 2022
As one of few animals with the capability to execute agile yawing maneuvers, it is quite desirable to take inspiration from hummingbird flight aerodynamics. To understand the wing and body kinematics and associated aerodynamics of a hummingbird performing a free yawing maneuver, a crucial step in mimicking the biological motion in robotic systems, we paired accurate digital reconstruction techniques with high-fidelity computational fluid dynamics (CFD) simulations. Results of the body and wing kinematics reveal that to achieve the pure yaw maneuver, the hummingbird utilizes very little body pitching, rolling, vertical, or horizontal motion.
View Article and Find Full Text PDFDiving birds are regarded as a classic example of morphological convergence. Divers tend to have small wings extending from rotund bodies, requiring many volant species to fly with rapid wingbeats, and rendering others flightless. The high wing-loading of diving birds is frequently associated with the challenge of using forelimbs adapted for flight for locomotion in a "draggier" fluid, but this does not explain why species that rely exclusively on their feet to dive should have relatively small wings, as well.
View Article and Find Full Text PDFFeather loss in domestic chickens can occur due to wear and tear, disease or bird-to-bird pecking. Flight feather loss may decrease wing use, cause pectoral muscle loss and adversely impact the keel bone to which these muscles anchor. Feather loss and muscle weakness are hypothesized risk factors for keel bone fractures that are reported in up to 98% of chickens.
View Article and Find Full Text PDFBackground: In most arthropods, adult females are larger than males, and male competition is a race to quickly locate and mate with scattered females (scramble competition polygyny). Variation in body size among males may confer advantages that depend on context. Smaller males may be favored due to more efficient locomotion leading to higher mobility during mate searching.
View Article and Find Full Text PDFGround-dwelling species of birds, such as domestic chickens (), experience difficulties sustaining flight due to high wing loading. This limited flight ability may be exacerbated by loss of flight feathers that is prevalent among egg-laying chickens. Despite this, chickens housed in aviary style systems need to use flight to access essential resources stacked in vertical tiers.
View Article and Find Full Text PDFWild birds modulate wing and whole-body kinematics to adjust their flight patterns and trajectories when wing loading increases flight power requirements. Domestic chickens () in backyards and farms exhibit feather loss, naturally high wing loading, and limited flight capabilities. Yet, housing chickens in aviaries requires birds to navigate three-dimensional spaces to access resources.
View Article and Find Full Text PDFMigration allows animals to use resources that are variable in time and/or space, with different migratory strategies depending on the predictability of resource variation. When food varies seasonally, obligate migrants anticipate and prepare for migration. In contrast, facultative migrants, whose movements are unpredictable in timing and destination, may prepare for either migration or escape when resources are depleted.
View Article and Find Full Text PDF