Publications by authors named "Bret Grasse"

Article Synopsis
  • The study aimed to validate dermal swabs as a method for assessing reproductive and stress hormones in California two-spot octopuses.
  • It focused on the hormonal differences between reproductive and senescent individuals, finding that reproductive ones had higher sex hormone levels and responded to stress with increased cortisol and testosterone.
  • The results showed that dermal swabs are effective and noninvasive, making them useful for monitoring octopus hormones, especially as more are being cultured in captivity.
View Article and Find Full Text PDF

Cephalopods are remarkable among invertebrates for their cognitive abilities, adaptive camouflage, novel structures, and propensity for recoding proteins through RNA editing. Due to the lack of genetically tractable cephalopod models, however, the mechanisms underlying these innovations are poorly understood. Genome editing tools such as CRISPR-Cas9 allow targeted mutations in diverse species to better link genes and function.

View Article and Find Full Text PDF

To better comprehend the physiology of cephalopods, we used a minimal invasive technique of skin mucus swabs to measure immunoreactive corticosteroids in three cephalopod species commonly kept in captivity and promoted as new model organisms: Euprymna berryi, Sepia bandensis, and Octopus chierchiae. We compared results between sexes and age classes and then evaluated their stress responses during acclimation to a new habitat. To better understand glucocorticoid production, we conducted an adrenocorticotropic hormone, using Cosyntropin (an adrenocorticotropin (ACTH) analogue) challenge with a saline control and swabbed their mantles at 15-minute intervals for 2 h.

View Article and Find Full Text PDF

A recent revival in using cephalopods as experimental animals has rekindled interest in their biology and life cycles, information with direct applications also in the rapidly growing ornamental aquarium species trade and in commercial aquaculture production for human consumption. Cephalopods have high rates of growth and food conversion, which for aquaculture translates into short culture cycles, high ratios of production to biomass and high cost-effectiveness. However, at present, only small-scale culture is possible and only for a few species: the cuttlefish Sepia officinalis, the loliginid squid Sepioteuthis lessoniana and the octopuses Octopus maya and O.

View Article and Find Full Text PDF