The magnetic resonance imaging (MRI) Core has been operating since Alzheimer's Disease Neuroimaging Initiative's (ADNI) inception, providing 20 years of data including reliable, multi-platform standardized protocols, carefully curated image data, and quantitative measures provided by expert investigators. The overarching purposes of the MRI Core include: (1) optimizing and standardizing MRI acquisition methods, which have been adopted by many multicenter studies and trials worldwide and (2) providing curated images and numeric summary values from relevant MRI sequences/contrasts to the scientific community. Over time, ADNI MRI has become increasingly complex.
View Article and Find Full Text PDFPhase four of the Alzheimer's Disease Neuroimaging Initiative (ADNI4) magnetic resonance imaging (MRI) protocols aim to maintain longitudinal consistency across two decades of data acquisition, while adopting new technologies. Here we describe and justify the study's design and targeted biomarkers. The ADNI4 MRI protocol includes nine MRI sequences.
View Article and Find Full Text PDFIntroduction: We compared white matter hyperintensities (WMHs) in early-onset Alzheimer's disease (EOAD) with cognitively normal (CN) and early-onset amyloid-negative cognitively impaired (EOnonAD) groups in the Longitudinal Early-Onset Alzheimer's Disease Study.
Methods: We investigated the role of increased WMH in cognition and amyloid and tau burden. We compared WMH burden of 205 EOAD, 68 EOnonAD, and 89 CN participants in lobar regions using t-tests and analyses of covariance.
Objective: To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD).
Methods: 142 DIAD mutation carriers received either gantenerumab SC (n = 52), solanezumab IV (n = 50), or placebo (n = 40). Participants underwent assessments with the Clinical Dementia Rating® (CDR®), neuropsychological testing, CSF biomarkers, β-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA.
Brain imaging with diffusion-weighted MRI (dMRI) is sensitive to microstructural white matter (WM) changes associated with brain aging and neurodegeneration. In its third phase, the Alzheimer's Disease Neuroimaging Initiative (ADNI3) is collecting data across multiple sites and scanners using different dMRI acquisition protocols, to better understand disease effects. It is vital to understand when data can be pooled across scanners, and how the choice of dMRI protocol affects the sensitivity of extracted measures to differences in clinical impairment.
View Article and Find Full Text PDFIntroduction: Alzheimer's Disease Neuroimaging Initiative (ADNI) is now in its 10th year. The primary objective of the magnetic resonance imaging (MRI) core of ADNI has been to improve methods for clinical trials in Alzheimer's disease (AD) and related disorders.
Methods: We review the contributions of the MRI core from present and past cycles of ADNI (ADNI-1, -Grand Opportunity and -2).
Objective: Our primary objective was to compare the performance of unaccelerated vs. accelerated structural MRI for measuring disease progression using serial scans in Alzheimer's disease (AD).
Methods: We identified cognitively normal (CN), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI) and AD subjects from all available Alzheimer's Disease Neuroimaging Initiative (ADNI) subjects with usable pairs of accelerated and unaccelerated scans.
Proc IEEE Int Symp Biomed Imaging
January 2012
Diffusion tensor imaging (DTI) is sensitive to the directionally- constrained flow of water, which diffuses preferentially along axons. Tractography programs may be used to infer matrices of connectivity (anatomical networks) between pairs of brain regions. Little is known about how these computed connectivity measures depend on the scans' spatial and angular resolutions.
View Article and Find Full Text PDFDiffusion weighted magnetic resonance imaging (DW-MRI) are now widely used to assess brain integrity in clinical populations. The growing interest in mapping brain connectivity has made it vital to consider what scanning parameters affect the accuracy, stability, and signal-to-noise of diffusion measures. Trade-offs between scan parameters can only be optimized if their effects on various commonly-derived measures are better understood.
View Article and Find Full Text PDFFunctions of the Alzheimer's Disease Neuroimaging Initiative (ADNI) magnetic resonance imaging (MRI) core fall into three categories: (1) those of the central MRI core laboratory at Mayo Clinic, Rochester, Minnesota, needed to generate high quality MRI data in all subjects at each time point; (2) those of the funded ADNI MRI core imaging analysis groups responsible for analyzing the MRI data; and (3) the joint function of the entire MRI core in designing and problem solving MR image acquisition, pre-processing, and analyses methods. The primary objective of ADNI was and continues to be improving methods for clinical trials in Alzheimer's disease. Our approach to the present ("ADNI-GO") and future ("ADNI-2," if funded) MRI protocol will be to maintain MRI methodological consistency in the previously enrolled "ADNI-1" subjects who are followed up longitudinally in ADNI-GO and ADNI-2.
View Article and Find Full Text PDFTensor-based morphometry can recover three-dimensional longitudinal brain changes over time by nonlinearly registering baseline to follow-up MRI scans of the same subject. Here, we compared the anatomical distribution of longitudinal brain structural changes, over 12 months, using a subset of the ADNI dataset consisting of 20 patients with Alzheimer's disease (AD), 40 healthy elderly controls, and 40 individuals with mild cognitive impairment (MCI). Each individual longitudinal change map (Jacobian map) was created using an unbiased registration technique, and spatially normalized to a geometrically-centered average image based on healthy controls.
View Article and Find Full Text PDFTensor-based morphometry (TBM) creates three-dimensional maps of disease-related differences in brain structure, based on nonlinearly registering brain MRI scans to a common image template. Using two different TBM designs (averaging individual differences versus aligning group average templates), we compared the anatomical distribution of brain atrophy in 40 patients with Alzheimer's disease (AD), 40 healthy elderly controls, and 40 individuals with amnestic mild cognitive impairment (aMCI), a condition conferring increased risk for AD. We created an unbiased geometrical average image template for each of the three groups, which were matched for sex and age (mean age: 76.
View Article and Find Full Text PDFThe Alzheimer's Disease Neuroimaging Initiative (ADNI) is a longitudinal multisite observational study of healthy elders, mild cognitive impairment (MCI), and Alzheimer's disease. Magnetic resonance imaging (MRI), (18F)-fluorodeoxyglucose positron emission tomography (FDG PET), urine serum, and cerebrospinal fluid (CSF) biomarkers, as well as clinical/psychometric assessments are acquired at multiple time points. All data will be cross-linked and made available to the general scientific community.
View Article and Find Full Text PDFMeasures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials.
View Article and Find Full Text PDFThe ability to detect individual Alzheimer's amyloid plaques in vivo by magnetic resonance microimaging (MRI) should improve diagnosis and also accelerate discovery of effective therapeutic agents for Alzheimer's disease (AD). Here, we perform in vivo and ex vivo MRI on double transgenic AD mice as well as wild-type mice at varying ages and correlate these with thioflavin-S and iron staining histology. Quantitative counts of individual plaques on MRI increase with age and correlate with histologically determined plaque burden.
View Article and Find Full Text PDFOne of the cardinal pathologic features of Alzheimer's disease (AD) is the formation of senile, or amyloid, plaques. Transgenic mice have been developed that express one or more of the genes responsible for familial AD in humans. Doubly transgenic mice develop "human-like" plaques, providing a mechanism to study amyloid plaque biology in a controlled manner.
View Article and Find Full Text PDFSmart molecular probes for both diagnostic and therapeutic purposes are expected to provide significant advances in clinical medicine and biomedical research. We describe such a probe that targets beta-amyloid plaques of Alzheimer's disease and is detectable by magnetic resonance imaging (MRI) because of contrast imparted by gadolinium labeling. Three properties essential for contrast enhancement of beta-amyloid plaques on MRI exist in this smart molecular probe, putrescine-gadolinium-amyloid-beta peptide: (1) transport across the blood-brain barrier following intravenous injection conferred by the polyamine moiety, (2) binding to plaques with molecular specificity by putrescine-amyloid-beta, and (3) magnetic resonance imaging contrast by gadolinium.
View Article and Find Full Text PDF