Publications by authors named "Bret A Unger"

As with most intermediate filament systems, the hierarchical self-assembly of vimentin into nonpolar filaments requires no nucleators or energy input. Utilizing a set of live-cell, single-molecule, and super-resolution microscopy tools, here we show that in mammalian cells, the assembly and disassembly of the vimentin cytoskeleton is highly sensitive to the protein net charge state. Starting with the intriguing observation that the vimentin cytoskeleton fully disassembles under hypotonic stress yet reassembles within seconds upon osmotic pressure recovery, we pinpoint ionic strength as its underlying driving factor.

View Article and Find Full Text PDF

Keratins are an integral part of cell structure and function. Here, it is shown that ectopic expression of a truncated isoform of keratin 81 (tKRT81) in breast cancer is upregulated in metastatic lesions compared to primary tumors and patient-derived circulating tumor cells, and is associated with more aggressive subtypes. tKRT81 physically interacts with keratin 18 (KRT18) and leads to changes in the cytosolic keratin intermediate filament network and desmosomal plaque formation.

View Article and Find Full Text PDF

Megakaryocytes (MK) undergo extensive cytoskeletal rearrangements as they give rise to platelets. While cortical microtubule sliding has been implicated in proplatelet formation, the role of the actin cytoskeleton in proplatelet elongation is less understood. It is assumed that actin filament reorganization is important for platelet generation given that mouse models with mutations in actin-associated proteins exhibit thrombocytopenia.

View Article and Find Full Text PDF

The recently discovered low-load metal-assisted catalytic etching (LL-MACE) creates nanostructured Si with controllable and variable characteristics that distinguish this technique from the conventional high-load variant. LL-MACE employs 150 times less metal catalyst and produces porous Si instead of Si nanowires. In this work, we demonstrate that some of the features of LL-MACE cannot be explained by the present understanding of MACE.

View Article and Find Full Text PDF

In mammalian cells, mitochondrial dysfunction triggers the integrated stress response, in which the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) results in the induction of the transcription factor ATF4. However, how mitochondrial stress is relayed to ATF4 is unknown. Here we show that HRI is the eIF2α kinase that is necessary and sufficient for this relay.

View Article and Find Full Text PDF

Metal-assisted catalytic etching (MACE) involving Ag deposited on Si particles has been reported as a facile method for the production of Si nanowires (Si NWs). We show that the structure of Si particles subjected to MACE changes dramatically in response to changing the loading of the Ag catalyst. The use of acetic acid as a surfactant and controlled injection of AgNO(aq) enhanced Ag deposition.

View Article and Find Full Text PDF

Metal-assisted catalytic etching (MACE) using Ag nanoparticles as catalysts and HO as oxidant has been performed on single-crystal Si wafers, single-crystal electronics grade Si powders, and polycrystalline metallurgical grade Si powders. The temperature dependence of the etch kinetics has been measured over the range 5-37°C. Etching is found to proceed preferentially in a 〈001〉 direction with an activation energy of ~0.

View Article and Find Full Text PDF