Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate.
View Article and Find Full Text PDFBackground/objectives: The colonization history of house mice reflects the maritime history of humans that passively transported them worldwide. We investigated western house mouse colonization in the Atlantic region through studies of mitochondrial D-loop DNA sequences from modern specimens.
Methods: We assembled a dataset of 758 haplotypes derived from 2765 mice from 47 countries/oceanic archipelagos (a combination of new and published data).
Recombination diversifies the genomes of offspring, influences the evolutionary dynamics of populations, and ensures that chromosomes segregate properly during meiosis. Individuals recombine at different rates but observed levels of variation in recombination rate remain mostly unexplained. Genetic dissection of differences in recombination rate within and between species provides a powerful framework for understanding how this trait evolves.
View Article and Find Full Text PDFMeiotic recombination is required for faithful chromosome segregation in most sexually reproducing organisms and shapes the distribution of genetic variation in populations. Both the overall rate and the spatial distribution of crossovers vary within and between species. Adjacent crossovers on the same chromosome tend to be spaced more evenly than expected at random, a phenomenon known as crossover interference.
View Article and Find Full Text PDFMeiotic recombination is required for faithful chromosome segregation in most sexually reproducing organisms and shapes the distribution of genetic variation in populations. Both the overall rate and the spatial distribution of crossovers vary within and between species. Adjacent crossovers on the same chromosome tend to be spaced more evenly than expected at random, a phenomenon known as crossover interference.
View Article and Find Full Text PDFThe genetic dissection of reproductive barriers between diverging lineages provides enticing clues into the origin of species. One strategy uses linkage analysis in experimental crosses to identify genomic locations involved in phenotypes that mediate reproductive isolation. A second framework searches for genomic regions that show reduced rates of exchange across natural hybrid zones.
View Article and Find Full Text PDFA primary function of the skeleton is to resist the loads imparted by body weight. Genetic analyses have identified genomic regions that contribute to differences in skeletal load resistance between laboratory strains of mice, but these studies are usually restricted to 1 or 2 bones and leave open the question of how load resistance evolves in natural populations. To address these challenges, we examined the genetics of bone structure using the largest wild house mice on record, which live on Gough Island (GI).
View Article and Find Full Text PDFThe evolution of behaviour on islands is a pervasive phenomenon that contributed to Darwin's theory of natural selection. Island populations frequently show increased boldness and exploration compared with their mainland counterparts. Despite the generality of this pattern, the genetic basis of island-associated behaviours remains a mystery.
View Article and Find Full Text PDFBackground selection (BGS), the effect that purifying selection exerts on sites linked to deleterious alleles, is expected to be ubiquitous across eukaryotic genomes. The effects of BGS reflect the interplay of the rates and fitness effects of deleterious mutations with recombination. A fundamental assumption of BGS models is that recombination rates are invariant over time.
View Article and Find Full Text PDFThe field of population genomics has grown rapidly in response to the recent advent of affordable, large-scale sequencing technologies. As opposed to the situation during the majority of the 20th century, in which the development of theoretical and statistical population genetic insights outpaced the generation of data to which they could be applied, genomic data are now being produced at a far greater rate than they can be meaningfully analyzed and interpreted. With this wealth of data has come a tendency to focus on fitting specific (and often rather idiosyncratic) models to data, at the expense of a careful exploration of the range of possible underlying evolutionary processes.
View Article and Find Full Text PDFSome of the most compelling examples of morphological evolution come from island populations. Alterations in the size and shape of the mandible have been repeatedly observed in murid rodents following island colonization. Despite this pattern and the significance of the mandible for dietary adaptation, the genetic basis of island-mainland divergence in mandibular form remains uninvestigated.
View Article and Find Full Text PDFBehav Ecol Sociobiol
April 2021
Island populations are hallmarks of extreme phenotypic evolution. Radical changes in resource availability and predation risk accompanying island colonization drive changes in behavior, which Darwin likened to tameness in domesticated animals. Although many examples of animal boldness are found on islands, the heritability of observed behaviors, a requirement for evolution, remains largely unknown.
View Article and Find Full Text PDFCytogenet Genome Res
February 2022
Meiotic recombination affects fertility, shuffles genomes, and modulates the effectiveness of natural selection. Despite conservation of the recombination pathway, the rate of recombination varies among individuals and along chromosomes. Recombination rate also differs among cells from the same organism, but this form of variation has received less attention.
View Article and Find Full Text PDFDemographic factors such as migration rate and population size can impede or facilitate speciation. In hybrid zones, reproductive boundaries between species are tested and demography mediates the opportunity for admixture between lineages that are partially isolated. Genomic ancestry is a powerful tool for revealing the history of admixed populations, but models and methods based on local ancestry are rarely applied to structured hybrid zones.
View Article and Find Full Text PDFMol Biol Evol
September 2021
Natural hybrid zones offer a powerful framework for understanding the genetic basis of speciation in progress because ongoing hybridization continually creates unfavorable gene combinations. Evidence indicates that postzygotic reproductive isolation is often caused by epistatic interactions between mutations in different genes that evolved independently of one another (hybrid incompatibilities). We examined the potential to detect epistatic selection against incompatibilities from genome sequence data using the site frequency spectrum (SFS) of polymorphisms by conducting individual-based simulations in SLiM.
View Article and Find Full Text PDFIn most species that reproduce sexually, successful gametogenesis requires recombination during meiosis. The number and placement of crossovers (COs) vary among individuals, with females and males often presenting the most striking contrasts. Despite the recognition that the sexes recombine at different rates (heterochiasmy), existing data fail to answer the question of whether patterns of genetic variation in recombination rate are similar in the two sexes.
View Article and Find Full Text PDFA key challenge in understanding how organisms adapt to their environments is to identify the mutations and genes that make it possible. By comparing patterns of sequence variation to neutral predictions across genomes, the targets of positive selection can be located. We applied this logic to house mice that invaded Gough Island (GI), an unusual population that shows phenotypic and ecological hallmarks of selection.
View Article and Find Full Text PDFIsland populations repeatedly evolve extreme body sizes, but the genomic basis of this pattern remains largely unknown. To understand how organisms on islands evolve gigantism, we compared genome-wide patterns of gene expression in Gough Island mice, the largest wild house mice in the world, and mainland mice from the WSB/EiJ wild-derived inbred strain. We used RNA-seq to quantify differential gene expression in three key metabolic organs: gonadal adipose depot, hypothalamus, and liver.
View Article and Find Full Text PDFPositive selection and purifying selection reduce levels of variation at linked neutral loci. One consequence of these processes is that the amount of neutral diversity and the meiotic recombination rate are predicted to be positively correlated across the genome-a prediction met in some species but not others. To better document the prevalence of selection at linked sites, we used new and published whole-genome sequences to survey nucleotide variation in population samples of the western European house mouse (Mus musculus domesticus) from Germany, France, and Gough Island, a remote volcanic island in the south Atlantic.
View Article and Find Full Text PDFThe Dobzhansky-Muller (DM) model provides a widely accepted mechanism for the evolution of reproductive isolation: incompatible substitutions disrupt interactions between genes. To date, few candidate incompatibility genes have been identified, leaving the genes driving speciation mostly uncharacterized. The importance of interactions in the DM model suggests that gene coexpression networks provide a powerful framework to understand disrupted pathways associated with postzygotic isolation.
View Article and Find Full Text PDFMeiotic recombination shapes evolution and helps to ensure proper chromosome segregation in most species that reproduce sexually. Recombination itself evolves, with species showing considerable divergence in the rate of crossing-over. However, the genetic basis of this divergence is poorly understood.
View Article and Find Full Text PDFThe synaptonemal complex (SC) is a proteinaceous scaffold required for synapsis and recombination between homologous chromosomes during meiosis. Although the SC has been linked to differences in genome-wide crossover rates, the genetic basis of standing variation in SC structure remains unknown. To investigate the possibility that recombination evolves through changes to the SC, we characterized the genetic architecture of SC divergence on two evolutionary timescales.
View Article and Find Full Text PDFAnnu Rev Genet
December 2019
Through recombination, genes are freed to evolve more independently of one another, unleashing genetic variance hidden in the linkage disequilibrium that accumulates through selection combined with drift. Yet crossover numbers are evolutionarily constrained, with at least one and not many more than one crossover per bivalent in most taxa. Crossover interference, whereby a crossover reduces the probability of a neighboring crossover, contributes to this homogeneity.
View Article and Find Full Text PDFHeredity (Edinb)
October 2019
Despite being linked to the fundamental processes of chromosome segregation and offspring diversification, meiotic recombination rates vary within and between species. Recent years have seen progress in quantifying recombination rate evolution across multiple temporal and genomic scales. Nevertheless, the level of variation in recombination rate within wild populations-a key determinant of evolution in this trait-remains poorly documented on the genomic scale.
View Article and Find Full Text PDFSince their arrival approximately 200 years ago, the house mice (Mus musculus) on Gough Island (GI) rapidly increased in size to become the largest wild house mice on record. Along with this extreme increase in body size, GI mice adopted a predatory diet, consuming significant quantities of seabird chicks and eggs. We studied this natural experiment to determine how evolution of extreme size and a novel diet impacted masticatory apparatus performance and functional morphology in these mice.
View Article and Find Full Text PDF