Background: Clinical practice guidelines and guidance documents routinely offer prescribing clinicians' recommendations and instruction on the use of psychotropic drugs for mental illness. We sought to characterise parameters relevant to prescribing and deprescribing of benzodiazepine (BZD) and benzodiazepine receptor agonist (BZRA), in clinical practice guidelines and guidance documents internationally, for adult patients with unipolar depression, anxiety disorders and insomnia to understand similarities and discrepancies between evidence-based expert opinion.
Methods: A Scoping Review was conducted to characterize documents that offered evidence-based and/or consensus pharmacologic guidance on the management of unipolar depression, anxiety disorders, obsessive-compulsive disorders, post-traumatic stress disorders and insomnia.
A series of N-(2-amino-5-substituted phenyl)benzamides (3-21) were designed, synthesized and evaluated for their inhibition of HDAC2 and their cytotoxicity in HCT116 cancer cells. Multiple compounds from this series demonstrated time-dependent binding kinetics that is rationalized using a co-complex crystal structure of HDAC2 and N-(4-aminobiphenyl-3-yl)benzamide (6).
View Article and Find Full Text PDFA series of N-hydroxy-3-[3-(1-substituted-1H-benzoimidazol-2-yl)-phenyl]-acrylamides (5a-5ab) and N-hydroxy-3-[3-(1,4,5-trisubstituted-1H-imidazol-2-yl)-phenyl]-acrylamides (12a-s) were designed, synthesized, and found to be nanomolar inhibitors of human histone deacetylases. Multiple compounds bearing an N1-piperidine demonstrate EC(50)s of 20-100 nM in human A549, HL60, and PC3 cells, in vitro and in vivo hyperacetylation of histones H3 and H4, and induction of p21(waf). Compound 5x displays efficacy in human tumor xenograft models.
View Article and Find Full Text PDFIn our continuation of the structure-based design of anti-trypanosomatid drugs, parasite-selective adenosine analogues were identified as low micromolar inhibitors of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Crystal structures of Trypanosoma brucei, Trypanosoma cruzi, Leishmania mexicana, and human GAPDH's provided details of how the adenosyl moiety of NAD(+) interacts with the proteins, and this facilitated the understanding of the relative affinities of a series of adenosine analogues for the various GAPDH's. From exploration of modifications of the naphthalenemethyl and benzamide substituents of a lead compound, N(6)-(1-naphthalenemethyl)-2'-deoxy-2'-(3-methoxybenzamido)adenosine (6e), N(6)-(substituted-naphthalenemethyl)-2'-deoxy-2'-(substituted-benzamido)adenosine analogues were investigated.
View Article and Find Full Text PDFThe glycolytic enzymes of trypanosomes are attractive drug targets, since the blood-stream form of Trypanosoma brucei lacks a functional citric acid cycle and is dependent solely on glycolysis for its energy requirements. Glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from the pathogenic trypanosomatids T. brucei, Trypanosoma cruzi and Leishmania mexicana are quite similar to each other, and yet have sufficient structural differences compared to the human enzyme to enable the structure-based design of compounds that selectively inhibit all three trypanosomatid enzymes but not the human homologue.
View Article and Find Full Text PDF2' and 7 Polyol carbonates of paclitaxel were synthesized and screened as potential paclitaxel prodrugs. Paclitaxel is released from 7-(2",3"-dihydroxypropylcarbonato) paclitaxel (Protaxel) at rates inversely proportional to pH, by an intramolecular cyclization. Compared to paclitaxel, maximum tolerated i.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2001
N6-Naphthalenemethyl-2'-methoxybenzamido-beta-NAD+, a derivative of a low micromolar first-generation inhibitor of trypanosomal glyceraldehyde phosphate dehydrogenase (GAPDH), was synthesized, taking advantage of methodology for the selective phosphitylation of nucleosides. The compound was found to be a poor alternate cosubstrate for GAPDH, but an extremely potent inhibitor. Although intended for use in crystallization trials, the analogue presents possibilities for further drug design.
View Article and Find Full Text PDFAs part of a project aimed at structure-based design of adenosine analogues as drugs against African trypanosomiasis, N(6)-, 2-amino-N(6)-, and N(2)-substituted adenosine analogues were synthesized and tested to establish structure-activity relationships for inhibiting Trypanosoma brucei glycosomal phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and glycerol-3-phosphate dehydrogenase (GPDH). Evaluation of X-ray structures of parasite PGK, GAPDH, and GPDH complexed with their adenosyl-bearing substrates led us to generate a series of adenosine analogues which would target all three enzymes simultaneously. There was a modest preference by PGK for N(6)-substituted analogues bearing the 2-amino group.
View Article and Find Full Text PDFA polymer-assisted solution-phase (PASP) synthesis of lead structure analogues ready for biological testing without the demand for chromatographic purification is described. Carboxylic acids are coupled to the Kenner or Ellman safety catch linker, respectively, activated by methylation or cyanomethylation and subsequently transferred to the 2'-amino group of the 2'-amino-2'-deoxyadenosine scaffold (5). The chemoselective attack of weakly nucleophilic amino groups on the N-alkylated N-acyl sulfonamide linker allows for the synthesis of amides 6 in high yields without the need for protection of primary and secondary hydroxyl functions.
View Article and Find Full Text PDFThe glycolytic enzyme phosphoglycerate kinase (PGK) catalyzes phosphoryl transfer between 1,3-bis-phosphoglycerate and ADP to form 3-phosphoglycerate and ATP. During catalysis, a major hinge bending motion occurs which brings the N and C-terminal enzyme domains and their bound substrates together and in-line for phosphoryl transfer. We have crystallized Trypanosoma brucei PGK in the presence of the bisubstrate analog, adenylyl 1,1,5,5-tetrafluoropentane-1, 5-bisphosphonate, and solved the structure of this complex in two different crystal forms at 1.
View Article and Find Full Text PDF