This study critically analyses filtration process modeling in membrane bioreactor (MBR) technology. More specifically, the variety of approaches and assumptions considered within a curated selection of resistance-in-series (RIS) filtration models found in the literature is critically assessed. Aimed to move towards good filtration process modeling practices, the basis for establishing a unified framework rooted in the fundamentals of membrane fouling is defined in this work, considering fouling classifications, process dynamics, and underlying processes used by different authors for elucidating membrane fouling phenomena.
View Article and Find Full Text PDFJ Environ Manage
November 2024
The optimization of integrated membrane bioreactors (MBRs) models is of paramount importance in view of reducing the costs, greenhouse gas emissions or enhancing the water quality. On this behalf, this paper, produced by the International Water Association (IWA) Task Group on Membrane modelling and control, reviews the current state-of-the-art regarding the control and optimization of integrated MBR models. Whether aerobic or anaerobic, such modelling allows the consideration of specific functioning conditions and optimization problems together with the estimation and monitoring of Performance Index (PIs).
View Article and Find Full Text PDFA mathematical correlation between biomass kinetic and membrane fouling can improve the understanding and spread of Membrane Bioreactor (MBR) technology, especially in solving the membrane fouling issues. On this behalf, this paper, produced by the International Water Association (IWA) Task Group on Membrane modelling and control, reviews the current state-of-the-art regarding the modelling of kinetic processes of biomass, focusing on modelling production and utilization of soluble microbial products (SMP) and extracellular polymeric substances (EPS). The key findings of this work show that the new conceptual approaches focus on the role of different bacterial groups in the formation and degradation of SMP/EPS.
View Article and Find Full Text PDFIntegrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas emissions.
View Article and Find Full Text PDFMembrane bioreactor (MBR) models are useful tools for both design and management. The system complexity is high due to the involved number of processes which can be clustered in biological and physical ones. Literature studies are present and need to be harmonized in order to gain insights from the different studies and allow system optimization by applying a control.
View Article and Find Full Text PDFA cost sensitivity analysis was carried out for a full-scale hollow fibre membrane bioreactor to quantify the effect of design choices and operational parameters on cost. Different options were subjected to a long term dynamic influent profile and evaluated using ASM1 for effluent quality, aeration requirements and sludge production. The results were used to calculate a net present value (NPV), incorporating both capital expenditure (capex), based on costs obtained from equipment manufacturers and full-scale plants, and operating expenditure (opex), accounting for energy demand, sludge production and chemical cleaning costs.
View Article and Find Full Text PDFMembrane bioreactors (MBRs) have been increasingly employed for municipal and industrial wastewater treatment in the last decade. The efforts for modelling of such wastewater treatment systems have always targeted either the biological processes (treatment quality target) as well as the various aspects of engineering (cost effective design and operation). The development of Activated Sludge Models (ASM) was an important evolution in the modelling of Conventional Activated Sludge (CAS) processes and their use is now very well established.
View Article and Find Full Text PDFBased on the practical experience in design and operation of three full-scale membrane bioreactors (MBR) for municipal wastewater treatment that were commissioned since 1999, an overview on the different design concepts that were applied to the three MBR plants is given. The investment costs and the energy consumption of the MBRs and conventional activated sludge (CAS) plants (with and without tertiary treatment) in the Erft river region are compared. It is found that the specific investment costs of the MBR plants are lower than those of comparable CAS with tertiary treatment.
View Article and Find Full Text PDFA simple model for evaluating energy demand arising from aeration of an MBR is presented based on a combination of empirical data for the membrane aeration and biokinetic modelling for the biological aeration. The model assumes that aeration of the membrane provides a proportion of the dissolved oxygen demanded for the biotreatment. The model also assumes, based on literature information sources, a linear relationship between membrane permeability and membrane aeration up to a threshold value, beyond which permeability is unchanged with membrane aeration.
View Article and Find Full Text PDFSystematically testing alternative cleaning agents and cleaning procedures on a large scale municipal membrane bioreactor, the Erftverband optimized the cleaning strategies and refined the original cleaning procedures for the hollow fiber membranes in use. A time-consuming, intensive ex-situ membrane cleaning twice a year was initially the regular routine. By introducing the effective means of cleaning in place in use today, which employs several acidic and oxidative/alkaline cleaning steps, intensive membrane cleaning could be delayed for years.
View Article and Find Full Text PDF