Objective: Our laboratory recently identified the centrally circulating α-klotho protein as a novel hypothalamic regulator of food intake and glucose metabolism in mice. The current study aimed to investigate novel molecular effectors of central α-klotho in the arcuate nucleus of the hypothalamus (ARC), while further deciphering its role regulating energy balance in both humans and mice.
Methods: Cerebrospinal fluid (CSF) was collected from 22 adults undergoing lower limb orthopedic surgeries, and correlations between body weight and α-klotho were determined using an α-klotho enzyme-linked immunosorbent assay (ELISA) kit.
While much is known about the role of agouti-regulated peptide/neuropeptide Y (AgRP/NPY) and pro-opiomelanocortin (POMC) neurons to regulate energy homeostasis, little is known about how forced energy expenditure, such as exercise, modulates these neurons and if these neurons are involved in post-exercise feeding behaviors. We utilized multiple mouse models to investigate the effects of acute, moderate-intensity exercise on food intake and neuronal activity in the arcuate nucleus (ARC) of the hypothalamus. NPY-GFP reporter mice were utilized for immunohistochemistry and patch-clamp electrophysiology experiments investigating neuronal activation immediately after acute treadmill exercise.
View Article and Find Full Text PDFα-Klotho is a circulating factor with well-documented antiaging properties. However, the central role of α-klotho in metabolism remains largely unexplored. The current study investigated the potential role of central α-klotho to modulate neuropeptide Y/agouti-related peptide (NPY/AgRP)-expressing neurons, energy balance, and glucose homeostasis.
View Article and Find Full Text PDFα-Klotho, a known anti-aging protein, exerts diverse physiological effects including: maintenance of phosphate and calcium homeostasis, modulation of cell proliferation, and enhanced buffering of reactive oxygen species. However, the role of α-Klotho in the regulation of energy metabolism is complex and poorly understood. Here we investigated the effects of 5 weeks peripheral administration of α-Klotho in high fat diet induced obese mice.
View Article and Find Full Text PDFAlzheimer's disease is a neurodegenerative disorder that affects the central nervous system. In this study, we characterized and examined the early metabolic changes in the triple transgenic mouse AD model (3xtg-AD), and their relationship with the hypothalamus, a key regulator of metabolism in the central nervous system. We observed that the 3xtg-AD model exhibited significantly higher oxygen consumption as well as food intake before reported amyloid plaque formation, indicating that metabolic abnormalities occurred at early onset in the 3xtg-AD model compared with their counterparts.
View Article and Find Full Text PDF