Cancers are driven by alterations in diverse genes, creating dependencies that can be therapeutically targeted. However, many genetic dependencies have proven inconsistent across tumors. Here we describe SCHEMATIC, a strategy to identify a core network of highly penetrant, actionable genetic interactions.
View Article and Find Full Text PDFPolypharmacology drugs-compounds that inhibit multiple proteins-have many applications but are difficult to design. To address this challenge we have developed POLYGON, an approach to polypharmacology based on generative reinforcement learning. POLYGON embeds chemical space and iteratively samples it to generate new molecular structures; these are rewarded by the predicted ability to inhibit each of two protein targets and by drug-likeness and ease-of-synthesis.
View Article and Find Full Text PDFCell-cycle control is accomplished by cyclin-dependent kinases (CDKs), motivating extensive research into CDK targeting small-molecule drugs as cancer therapeutics. Here we use combinatorial CRISPR/Cas9 perturbations to uncover an extensive network of functional interdependencies among CDKs and related factors, identifying 43 synthetic-lethal and 12 synergistic interactions. We dissect CDK perturbations using single-cell RNAseq, for which we develop a novel computational framework to precisely quantify cell-cycle effects and diverse cell states orchestrated by specific CDKs.
View Article and Find Full Text PDFOncogenesis relies on the alteration of multiple driver genes, but precisely which groups of alterations lead to cancer is not well understood. To chart these combinations, Zhao and colleagues use the CRISPR-Cas9 system to knockout all pairwise combinations among 52 tumor suppressor genes, with the goal of identifying groups of alterations that collaborate to promote cell growth. Interaction screens are performed across multiple models of tumorigenesis in cell cultures and mice, revealing clear cooperation among , , and in multiple models.
View Article and Find Full Text PDFGenetic screens in have allowed for the identification of many genes as sensors or effectors of DNA damage, typically by comparing the fitness of genetic mutants in the presence or absence of DNA-damaging treatments. However, these static screens overlook the dynamic nature of DNA damage response pathways, missing time-dependent or transient effects. Here, we examine gene dependencies in the dynamic response to ultraviolet radiation-induced DNA damage by integrating ultra-high-density arrays of 6144 diploid gene deletion mutants with high-frequency time-lapse imaging.
View Article and Find Full Text PDFThe UK Biobank is an unprecedented resource for human disease research. In March 2019, 49,997 exomes were made publicly available to investigators. Here we note that thousands of variant calls are unexpectedly absent from this dataset, with 641 genes showing zero variation.
View Article and Find Full Text PDFSystematic measurements of genetic interactions have been used to classify gene functions and to categorize genes into protein complexes, functional pathways and biological processes. This protocol describes how to perform a high-throughput genetic interaction screen in S. cerevisiae using a variant of epistatic miniarray profiles (E-MAP) in which the fitnesses of 6144 colonies are measured simultaneously.
View Article and Find Full Text PDFRecurrent deletions of chromosome 15q13.3 associate with intellectual disability, schizophrenia, autism and epilepsy. To gain insight into the instability of this region, we sequenced it in affected individuals, normal individuals and nonhuman primates.
View Article and Find Full Text PDF