Prototype-based methods in deep learning offer interpretable explanations for decisions by comparing inputs to typical representatives in the data. This study explores the adaptation of SESM, a self-attention-based prototype method successful in electrocardiogram (ECG) tasks, for electroencephalogram (EEG) signals. The architecture is evaluated on sleep stage classification, exploring its efficacy in predicting stages with single-channel EEG.
View Article and Find Full Text PDF