Background: Artificial neural networks (ANN) mimic the function of the human brain and are capable of performing massively parallel computations for data processing and knowledge representation. ANN can capture nonlinear relationships between predictors and responses and can adaptively learn complex functional forms, in particular, for situations where conventional regression models are ineffective. In a previous study, ANN with Bayesian regularization outperformed a benchmark linear model when predicting milk yield in dairy cattle or grain yield of wheat.
View Article and Find Full Text PDFSummary Imputation of moderate-density genotypes from low-density panels is of increasing interest in genomic selection, because it can dramatically reduce genotyping costs. Several imputation software packages have been developed, but they vary in imputation accuracy, and imputed genotypes may be inconsistent among methods. An AdaBoost-like approach is proposed to combine imputation results from several independent software packages, i.
View Article and Find Full Text PDF