Publications by authors named "Brent W Meier"

Promotion of lung tumors in mice by the food additive butylated hydroxytoluene (BHT) is mediated by electrophilic metabolites produced in the target organ. Identifying the proteins alkylated by these quinone methides (QMs) is a necessary step in understanding the underlying mechanisms. Covalent adducts of the antioxidant enzymes peroxiredoxin 6 and Cu,Zn superoxide dismutase were detected previously in lung cytosols from BALB/c mice injected with BHT, and complimentary in vitro studies demonstrated that QM alkylation causes inactivation and enhances oxidative stress.

View Article and Find Full Text PDF

An established model for mechanistic analysis of lung carcinogenesis involves administration of 3-methylcholanthrene to mice followed by several weekly injections of the tumor promoter 2,6-di-tert-butyl-4-methylphenol (BHT). BHT is metabolized to quinone methides (QMs) responsible for promoting tumor formation. QMs are strongly electrophilic and readily form adducts with proteins.

View Article and Find Full Text PDF

Two quinone methide (QM) metabolites of the phenolic antioxidant butylated hydroxytoluene (BHT), 2,6-di-tert-butyl-4-methylenecyclohexa-2,5-dienone (BHT-QM) and the tert-butyl-hydroxylated derivative (BHTOH-QM), are believed to be responsible for promoting lung tumor formation in mice treated with BHT. QMs are strongly electrophilic and undergo Michael type additions with nucleophiles at the exocyclic methylene to form benzylic thioether adducts. Our goal was to identify intracellular protein targets of these QMs in order to gain insight into their effects on tumorigenesis.

View Article and Find Full Text PDF

Oxidation of the food preservative 2,6-di-tert-butyl-4-methylphenol (BHT) by mouse lung cytochrome P450 produces electrophilic quinone methides thought to promote lung tumors in mice by covalent binding to critical proteins. Specific pulmonary targets of 2,6-di-tert-butyl-4-methylenecyclohexa-2,5-dienone (BHT-QM) have not been identified, however. The present work was undertaken to determine if glutathione S-transferase P1-1 (GSTP1-1) is alkylated by BHT-QM, as this protein is overexpressed in tumors and has important roles in protecting cells from electrophiles and oxidants and in regulating stress kinases.

View Article and Find Full Text PDF