Gram-positive bacterial infections are a major cause of organ failure and mortality in sepsis. Cell wall peptidoglycan (PGN) is shed during bacterial replication, and PGN promotes a sepsis-like pathology in baboons. Herein, we determined the ability of polymeric PGN free from TLR ligands to shape human dendritic cell (DC) responses that are important for the initiation of T cell immunity.
View Article and Find Full Text PDFHere, we describe the capacity of Bacillus anthracis peptidoglycan (BaPGN) to trigger an antimicrobial response in human white blood cells (WBCs). Analysis of freshly isolated human blood cells found that monocytes and neutrophils, but not B and T cells, were highly responsive to BaPGN and produced a variety of cytokines and chemokines. This BaPGN-induced response was suppressed by anthrax lethal toxin (LT) and edema toxin (ET), with the most pronounced effect on human monocytes, and this corresponded with the higher levels of anthrax toxin receptor 1 (ANTXR1) in these cells than in neutrophils.
View Article and Find Full Text PDFPlatelet activation frequently accompanies sepsis and contributes to the sepsis-associated vascular leakage and coagulation dysfunction. Our previous work has implicated peptidoglycan (PGN) as an agent causing systemic inflammation in gram-positive sepsis. We used flow cytometry and fluorescent microscopy to define the effects of PGN on the activation of human platelets.
View Article and Find Full Text PDFGram-positive bacteria are an important public health problem, but it is unclear how they cause systemic inflammation in sepsis. Our previous work showed that peptidoglycan (PGN) induced proinflammatory cytokines in human cells by binding to an unknown extracellular receptor, followed by phagocytosis leading to the generation of NOD ligands. In this study, we used flow cytometry to identify host factors that supported PGN binding to immune cells.
View Article and Find Full Text PDFRetrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and endoplasmic reticulum (ER). To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes (EE), recycling endosomes, late endosomes and lysosomes. All cargos pass through EE, but may take different routes to the Golgi.
View Article and Find Full Text PDFUsing a newly developed microfluidic chamber, we have demonstrated in vitro that Ca(2+) functions as a chemoattractant of aggregation-competent Dictyostelium discoideum amoebae, that parallel spatial gradients of cAMP and Ca(2+) are more effective than either alone, and that cAMP functions as a stronger chemoattractant than Ca(2+). Effective Ca(2+) gradients are extremely steep compared with effective cAMP gradients. This presents a paradox because there is no indication to date that steep Ca(2+) gradients are generated in aggregation territories.
View Article and Find Full Text PDFExtracellular signal regulated kinases (ERKs) are a class of MAP kinases that function in many signaling pathways in eukaryotic cells and in some cases, a single stimulus can activate more than one ERK suggesting functional redundancy or divergence from a common pathway. Dictyostelium discoideum encodes only two MAP kinases, ERK1 and ERK2, that both function during the developmental life cycle. To determine if ERK1 and ERK2 have overlapping functions, chemotactic and developmental phenotypes of erk1(-) and erk2(-) mutants were assessed with respect to G protein-mediated signal transduction pathways.
View Article and Find Full Text PDFMicrobiology (Reading)
March 2010
The Dictyostelium Galpha5 subunit has been shown to reduce cell viability, inhibit folate chemotaxis and accelerate tip morphogenesis and gene expression during multicellular development. Alteration of the D-motif (mitogen-activated protein kinase docking site) at the amino terminus of the Galpha 5 subunit or the loss of extracellular signal-regulated kinase (ERK)1 diminished the lethality associated with the overexpression or constitutive activation of the Galpha5 subunit. The amino-terminal D-motif of the Galpha5 subunit was also found to be necessary for the reduced cell size, small aggregate formation and precocious developmental gene expression associated with Galpha5 subunit overexpression.
View Article and Find Full Text PDFDictyostelium discoideum uses G protein-mediated signal transduction for many vegetative and developmental functions, suggesting the existence of G protein-coupled receptors (GPCRs) other than the four known cyclic adenosine monophosphate (cAMP) receptors (cAR1-4). Sequences of the cAMP receptors were used to identify Dictyostelium genes encoding cAMP receptor-like proteins, CrlA-C. Limited sequence identity between these putative GPCRs and the cAMP receptors suggests the Crl receptors are unlikely to be receptors for cAMP.
View Article and Find Full Text PDF