Purpose: Object naming requires visual decoding, conceptualization, semantic categorization, and phonological encoding, all within 400 to 600 ms of stimulus presentation and before a word is spoken. In this study, we sought to predict semantic categories of naming responses based on prearticulatory brain activity recorded with scalp EEG in healthy individuals.
Methods: We assessed 19 healthy individuals who completed a naming task while undergoing EEG.
People with refractory epilepsy are overwhelmed by the uncertainty of their next seizures. Accurate prediction of future seizures could greatly improve the quality of life for these patients. New evidence suggests that seizure occurrences can have cyclical patterns for some patients.
View Article and Find Full Text PDFTemporal lobe epilepsy is associated with MRI findings reflecting underlying mesial temporal sclerosis. Identifying these MRI features is critical for the diagnosis and management of temporal lobe epilepsy. To date, this process relies on visual assessment by highly trained human experts (e.
View Article and Find Full Text PDFArtificial intelligence has recently gained popularity across different medical fields to aid in the detection of diseases based on pathology samples or medical imaging findings. Brain magnetic resonance imaging (MRI) is a key assessment tool for patients with temporal lobe epilepsy (TLE). The role of machine learning and artificial intelligence to increase detection of brain abnormalities in TLE remains inconclusive.
View Article and Find Full Text PDFObjective: Medial temporal lobe epilepsy (TLE) is the most common form of medication-resistant focal epilepsy in adults. Despite removal of medial temporal structures, more than one-third of patients continue to have disabling seizures postoperatively. Seizure refractoriness implies that extramedial regions are capable of influencing the brain network and generating seizures.
View Article and Find Full Text PDFEpilepsy is a common and serious neurological disorder, with many different constituent conditions characterized by their electro clinical, imaging, and genetic features. MRI has been fundamental in advancing our understanding of brain processes in the epilepsies. Smaller-scale studies have identified many interesting imaging phenomena, with implications both for understanding pathophysiology and improving clinical care.
View Article and Find Full Text PDFNon-fluent speech is one of the most common impairments in post-stroke aphasia. The rehabilitation of non-fluent speech in aphasia is particularly challenging as patients are rarely able to produce and practice fluent speech production. Speech entrainment is a behavioural technique that enables patients with non-fluent aphasia to speak fluently.
View Article and Find Full Text PDFCognitive ability is an important predictor of mental health outcomes that is influenced by neurodevelopment. Evidence suggests that the foundational wiring of the human brain is in place by birth, and that the white matter (WM) connectome supports developing brain function. It is unknown, however, how the WM connectome at birth supports emergent cognition.
View Article and Find Full Text PDFObjective: We evaluated whether deep learning applied to whole-brain presurgical structural connectomes could be used to predict postoperative seizure outcome more accurately than inference from clinical variables in patients with mesial temporal lobe epilepsy (TLE).
Methods: Fifty patients with unilateral TLE were classified either as having persistent disabling seizures (SZ) or becoming seizure-free (SZF) at least 1 year after epilepsy surgery. Their presurgical structural connectomes were reconstructed from whole-brain diffusion tensor imaging.
Brain Imaging Behav
August 2019
The functional brain network has gained increased attention in the neuroscience community because of its ability to reveal the underlying architecture of human brain. In general, majority work of functional network connectivity is built based on the correlations between discrete-time-series signals that link only two different brain regions. However, these simple region-to-region connectivity models do not capture complex connectivity patterns between three or more brain regions that form a connectivity subnetwork, or subnetwork for short.
View Article and Find Full Text PDFGraph-based transductive learning (GTL) is a powerful machine learning technique that is used when sufficient training data is not available. In particular, conventional GTL approaches first construct a fixed inter-subject relation graph that is based on similarities in voxel intensity values in the feature domain, which can then be used to propagate the known phenotype data (i.e.
View Article and Find Full Text PDFBrain enlargement has been observed in children with autism spectrum disorder (ASD), but the timing of this phenomenon, and the relationship between ASD and the appearance of behavioural symptoms, are unknown. Retrospective head circumference and longitudinal brain volume studies of two-year olds followed up at four years of age have provided evidence that increased brain volume may emerge early in development. Studies of infants at high familial risk of autism can provide insight into the early development of autism and have shown that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life.
View Article and Find Full Text PDFMach Learn Med Imaging
October 2016
The functional connectome has gained increased attention in the neuroscience community. In general, most network connectivity models are based on correlations between discrete-time series signals that only connect two different brain regions. However, these bivariate region-to-region models do not involve three or more brain regions that form a subnetwork.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
October 2016
The brain connectome provides an unprecedented degree of information about the organization of neuronal network architecture, both at a regional level, as well as regarding the entire brain network. Over the last several years the neuroimaging community has made tremendous advancements in the analysis of structural connectomes derived from white matter fiber tractography or functional connectomes derived from time-series blood oxygen level signals. However, computational techniques that combine structural and functional connectome data to discover complex relationships between fiber density and signal synchronization, including the relationship with health and disease, has not been consistently performed.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2016
Structural magnetic resonance imaging (MRI) is a very popular and effective technique used to diagnose Alzheimer's disease (AD). The success of computer-aided diagnosis methods using structural MRI data is largely dependent on the two time-consuming steps: 1) nonlinear registration across subjects, and 2) brain tissue segmentation. To overcome this limitation, we propose a landmark-based feature extraction method that does not require nonlinear registration and tissue segmentation.
View Article and Find Full Text PDFFeature selection is a critical step in deformable image registration. In particular, selecting the most discriminative features that accurately and concisely describe complex morphological patterns in image patches improves correspondence detection, which in turn improves image registration accuracy. Furthermore, since more and more imaging modalities are being invented to better identify morphological changes in medical imaging data, the development of deformable image registration method that scales well to new image modalities or new image applications with little to no human intervention would have a significant impact on the medical image analysis community.
View Article and Find Full Text PDFPurpose: To investigate anatomical differences across individual subjects, or longitudinal changes in early brain development, it is important to perform accurate image registration. However, due to fast brain development and dynamic tissue appearance changes, it is very difficult to align infant brain images acquired from birth to 1-yr-old.
Methods: To solve this challenging problem, a novel image registration method is proposed to align two infant brain images, regardless of age at acquisition.
The objective of this study is to evaluate machine learning algorithms aimed at predicting surgical treatment outcomes in groups of patients with temporal lobe epilepsy (TLE) using only the structural brain connectome. Specifically, the brain connectome is reconstructed using white matter fiber tracts from presurgical diffusion tensor imaging. To achieve our objective, a two-stage connectome-based prediction framework is developed that gradually selects a small number of abnormal network connections that contribute to the surgical treatment outcome, and in each stage a linear kernel operation is used to further improve the accuracy of the learned classifier.
View Article and Find Full Text PDFMachine learning methods have successfully been used to predict the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD), by classifying MCI converters (MCI-C) from MCI nonconverters (MCI-NC). However, most existing methods construct classifiers using data from one particular target domain (e.g.
View Article and Find Full Text PDFMulti-atlas patch-based label fusion methods have been successfully used to improve segmentation accuracy in many important medical image analysis applications. In general, to achieve label fusion a single target image is first registered to several atlas images. After registration a label is assigned to each target point in the target image by determining the similarity between the underlying target image patch (centered at the target point) and the aligned image patch in each atlas image.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2008
This paper introduces a new benchmark study to evaluate the performance of landmark-based shape correspondence used for statistical shape analysis. Different from previous shape-correspondence evaluation methods, the proposed benchmark first generates a large set of synthetic shape instances by randomly sampling a given statistical shape model that defines a ground-truth shape space. We then run a test shape-correspondence algorithm on these synthetic shape instances to identify a set of corresponded landmarks.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
January 2008
This paper introduces a new benchmark study of evaluating landmark-based shape correspondence used for statistical shape analysis. Different from previous shape-correspondence evaluation methods, the proposed benchmark first generates a large set of synthetic shape instances by randomly sampling a specified ground-truth statistical shape model. We then run the test shape-correspondence algorithms on these synthetic shape instances to construct a new statistical shape model.
View Article and Find Full Text PDF