Publications by authors named "Brent L Showalter"

Nucleotomy is a common surgical procedure and is also performed in ex vivo mechanical testing to model decreased nucleus pulposus (NP) pressurization that occurs with degeneration. Here, we implement novel and noninvasive methods using magnetic resonance imaging (MRI) to study internal 3D annulus fibrosus (AF) deformations after partial nucleotomy and during axial compression by evaluating changes in internal AF deformation at reference loads (50 N) and physiological compressive loads (∼10% strain). One particular advantage of this methodology is that the full 3D disc deformation state, inclusive of both in-plane and out-of-plane deformations, can be quantified through the use of a high-resolution volumetric MR scan sequence and advanced image registration.

View Article and Find Full Text PDF

Lumbar intervertebral body fusion devices (L-IBFDs) are intended to provide stability to promote fusion in patients with a variety of lumbar pathologies. Different L-IBFD designs have been developed to accommodate various surgical approaches for lumbar interbody fusion procedures including anterior, lateral, posterior, and transforaminal lumbar interbody fusions (ALIF, LLIF, PLIF, and TLIF, respectively). Due to design differences, there is a potential for mechanical performance differences between ALIF, LLIF, PLIF, and TLIF devices.

View Article and Find Full Text PDF
Article Synopsis
  • Tissue strain is a crucial indicator of disc mechanics, but measuring it noninvasively in intervertebral discs is challenging.
  • This study created a 3D average disc strain template for human L4-L5 discs under axial compression, highlighting significant strain patterns and reducing individual variability.
  • The findings align closely with a validated finite element model, suggesting that this new measurement technique can aid in research on disc pathologies, treatment evaluations, and other complex loading scenarios.
View Article and Find Full Text PDF

Despite the prevalence of disc degeneration and its contributions to low back problems, many current treatments are palliative only and ultimately fail. To address this, nucleus pulposus replacements are under development. Previous work on an injectable hydrogel nucleus pulposus replacement composed of n-carboxyethyl chitosan, oxidized dextran, and teleostean has shown that it has properties similar to native nucleus pulposus, can restore compressive range of motion in ovine discs, is biocompatible, and promotes cell proliferation.

View Article and Find Full Text PDF

The first objective of this study was to determine the effects of physiological cyclic loading followed by unloaded recovery on the mechanical response of human intervertebral discs. The second objective was to examine how nucleotomy alters the disc's mechanical response to cyclic loading. To complete these objectives, 15 human L5-S1 discs were tested while intact and subsequent to nucleotomy.

View Article and Find Full Text PDF

Intervertebral disc degeneration is implicated as a major cause of low-back pain. There is a pressing need for new regenerative therapies for disc degeneration that restore native tissue structure and mechanical function. To that end we investigated the therapeutic potential of an injectable, triple-interpenetrating-network hydrogel comprised of dextran, chitosan, and teleostean, for functional regeneration of the nucleus pulposus (NP) of the intervertebral disc in a series of biomechanical, cytotoxicity, and tissue engineering studies.

View Article and Find Full Text PDF

Objectives: To compare the in vitro biomechanical properties of a 4.5 mm narrow locking compression plate (PIP-LCP) with 2 abaxially located transarticular screws and a 4.5 mm limited contact dynamic compression plate (LC-DCP) with 2 abaxially located transarticular screws using equine pasterns.

View Article and Find Full Text PDF

Study Design: Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these with the human disc.

Objective: To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content.

Summary Of Background Data: There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content.

View Article and Find Full Text PDF