Publications by authors named "Brent L Lockwood"

In organisms with complex life cycles, life stages that are most susceptible to environmental stress may determine species persistence in the face of climate change. Early embryos of are particularly sensitive to acute heat stress, yet tropical embryos have higher heat tolerance than temperate embryos, suggesting adaptive variation in embryonic heat tolerance. We compared transcriptomic responses to heat stress among tropical and temperate embryos to elucidate the gene regulatory basis of divergence in embryonic heat tolerance.

View Article and Find Full Text PDF

Global climate change has the potential to negatively impact biological systems as organisms are exposed to novel temperature regimes. Increases in annual mean temperature have been accompanied by disproportionate rates of change in temperature across seasons, and winter is the season warming most rapidly. Yet, we know relatively little about how warming will alter the physiology of overwintering organisms.

View Article and Find Full Text PDF

Thermal tolerance of an organism depends on both the ability to dynamically adjust to a thermal stress and preparatory developmental processes that enhance thermal resistance. However, the extent to which standing genetic variation in thermal tolerance alleles influence dynamic stress responses vs. preparatory processes is unknown.

View Article and Find Full Text PDF

Fighting between different species is widespread in the animal kingdom, yet this phenomenon has been relatively understudied in the field of aggression research. Particularly lacking are studies that test the effect of genetic distance, or relatedness, on aggressive behaviour between species. Here we characterized male-male aggression within and between species of fruit flies across the phylogeny.

View Article and Find Full Text PDF

Maternal investment is likely to have direct effects on offspring survival. In oviparous animals whose embryos are exposed to the external environment, maternal provisioning of molecular factors like mRNAs and proteins may help embryos cope with sudden changes in the environment. Here, we sought to modify the maternal mRNA contribution to offspring embryos and test for maternal effects on acute thermal tolerance in early embryos of We drove overexpression of a small heat shock protein gene () in female ovaries and measured the effects of acute thermal stress on offspring embryonic survival and larval development.

View Article and Find Full Text PDF

Amylase activity variation in the guts of several model organisms appears to be explained by amylase gene copy number variation. We tested the hypothesis that amylase gene copy number is always elevated in animals with high amylolytic activity. We therefore sequenced the amylase genes and examined amylase gene copy number in prickleback fishes (family Stichaeidae) with different diets including two species of convergently evolved herbivores with the elevated amylase activity phenotype.

View Article and Find Full Text PDF

Transcriptomics is a powerful tool for elucidating the molecular mechanisms that underlie the ability of organisms to survive and thrive in dynamic and changing environments. Here, we review the major contributions in this field, and we focus on studies of mussels in the genus Mytilus, which are well-established models for the study of ecological physiology in fluctuating environments. Our review is organized into four main sections.

View Article and Find Full Text PDF

Temperature is a strong selective force on the evolution of proteins due to its effects on higher orders of protein structure and, thereby, on critical protein functions like ligand binding and catalysis. Comparisons among orthologous proteins from differently thermally adapted species show consistent patterns of adaptive variation in function, but few studies have examined functional adaptation among multiple structural families of proteins. Thus, with our present state of knowledge, it is difficult to predict what fraction of the proteome will exhibit adaptive variation in the face of temperature increases of a few to several degrees Celsius, that is, temperature increases of the magnitude predicted by models of global warming.

View Article and Find Full Text PDF

The invasive marine mussel Mytilus galloprovincialis has displaced the native congener Mytilus trossulus from central and southern California, but the native species remains dominant at more northerly sites that have high levels of freshwater input. To determine the extent to which interspecific differences in physiological tolerance to low salinity might explain limits to the invasive species' biogeography, we used an oligonucleotide microarray to compare the transcriptional responses of these two species to an acute decrease in salinity. Among 6777 genes on the microarray, 117 genes showed significant changes that were similar between species, and 12 genes showed significant species-specific responses to salinity stress.

View Article and Find Full Text PDF

Invasive species are increasingly prevalent in marine ecosystems worldwide. Although many studies have examined the ecological effects of invasives, little is known about the physiological mechanisms that might contribute to invasive success. The mussel Mytilus galloprovincialis, a native of the Mediterranean Sea, is a successful invader on the central and southern coasts of California, where it has largely displaced the native congener, Mytilus trossulus.

View Article and Find Full Text PDF

Ethanol, a widely abused substance, elicits evolutionarily conserved behavioral responses in a concentration-dependent manner in vivo. The molecular mechanisms underlying such behavioral sensitivity to ethanol are poorly understood. While locomotor-based behavioral genetic screening is successful in identifying genes in invertebrate models, such complex behavior-based screening has proven difficult for recovering genes in vertebrates.

View Article and Find Full Text PDF