Micromachines (Basel)
August 2020
Paper-based microfluidic devices are an attractive platform for developing low-cost, point-of-care diagnostic tools. As paper-based devices' detection chemistries become more complex, more complicated devices are required, often entailing the sequential delivery of different liquids or reagents to reaction zones. Most research into flow control has been focused on introducing delays.
View Article and Find Full Text PDFIn paper-based microfluidics, the simplest devices are colorimetric, giving qualitative results. However, getting quantitative data can be quite a bit more difficult. Distance-based devices provide a user-friendly means of obtaining quantitative data without the need for any additional equipment, simply by using an included ruler or calibrated markings.
View Article and Find Full Text PDFWe demonstrate the use of patterned aerosol adhesives to construct both planar and nonplanar 3D paper microfluidic devices. By spraying an aerosol adhesive through a metal stencil, the overall amount of adhesive used in assembling paper microfluidic devices can be significantly reduced. We show on a simple 4-layer planar paper microfluidic device that the optimal adhesive application technique and device construction style depends heavily on desired performance characteristics.
View Article and Find Full Text PDFThis article discusses the fabrication of planar and nonplanar 3D paper microfluidic circuits through the use of patterned spray adhesive application and origami techniques. The individual paper layers are held together via semi-permanent adhesive bonds without the need for external clamps. Semi-permanent bonds accommodate the repeated folding and unfolding required by complex origami device structures and allow the device to be unfolded post-use to view internally displayed results.
View Article and Find Full Text PDF