Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals.
View Article and Find Full Text PDFCell-free and cell-to-cell spread of herpesviruses involves a core fusion apparatus comprised of the fusion protein glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL/gO and gH/gL/pUL128-131 facilitate spread in different cell types. The gO and pUL128-131 components bind distinct receptors, but how the gH/gL portions of the complexes functionally compare is not understood.
View Article and Find Full Text PDFHeterodimers of glycoproteins H (gH) and L (gL) comprise a basal element of the viral membrane fusion machinery conserved across herpesviruses. In human cytomegalovirus (HCMV), the glycoprotein UL116 assembles onto gH at a position similar to that occupied by gL, forming a heterodimer that is incorporated into virions. Here, we show that UL116 promotes the expression of gH/gL complexes and is required for the efficient production of infectious cell-free virions.
View Article and Find Full Text PDFIt is widely held that clinical isolates of human cytomegalovirus (HCMV) are highly cell associated, and mutations affecting the UL128-131 and RL13 loci that arise in culture lead to the appearance of a cell-free spread phenotype. The bacterial artificial chromosome (BAC) clone Merlin (ME) expresses abundant UL128-131, is RL13 impaired, and produces low infectivity virions in fibroblasts, whereas TB40/e (TB) and TR are low in UL128-131, are RL13 intact, and produce virions of much higher infectivity. Despite these differences, quantification of spread by flow cytometry revealed remarkably similar spread efficiencies in fibroblasts.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) glycoproteins H and L (gH/gL) can be bound by either gO or the UL128 to UL131 proteins (referred to here as UL128-131) to form complexes that facilitate entry and spread, and the complexes formed are important targets of neutralizing antibodies. Strains of HCMV vary considerably in the levels of gH/gL/gO and gH/gL/UL128-131, and this can impact infectivity and cell tropism. In this study, we investigated how natural interstrain variation in the amino acid sequence of gO influences the biology of HCMV.
View Article and Find Full Text PDFThe tropism of human cytomegalovirus (HCMV) is influenced by the envelope glycoprotein complexes gH/gL/gO and gH/gL/UL128-131. During virion assembly, gO and the UL128-131 proteins compete for binding to gH/gL in the endoplasmic reticulum (ER). This assembly process clearly differs among strains, since Merlin (ME) virions contain abundant gH/gL/UL128-131 and little gH/gL/gO, whereas TR contains much higher levels of total gH/gL, mostly in the form of gH/gL/gO, but much lower levels of gH/gL/UL128-131 than ME.
View Article and Find Full Text PDFUnlabelled: The core, conserved function of the herpesvirus gH/gL is to promote gB-mediated membrane fusion during entry, although the mechanism is poorly understood. The human cytomegalovirus (HCMV) gH/gL can exist as either the gH/gL/gO trimer or the gH/gL/UL128/UL130/UL131 (gH/gL/UL128-131) pentamer. One model suggests that gH/gL/gO provides the core fusion role during entry into all cells within the broad tropism of HCMV, whereas gH/gL/UL128-131 acts at an earlier stage, by a distinct receptor-binding mechanism to enhance infection of select cell types, such as epithelial cells, endothelial cells, and monocytes/macrophages.
View Article and Find Full Text PDFUnlabelled: Interaction between gH/gL and the fusion protein gB is likely a conserved feature of the entry mechanism for all herpesviruses. Human cytomegalovirus (HCMV) gH/gL can be bound by gO or by the set of proteins UL128, UL130, and UL131, forming gH/gL/gO and gH/gL/UL128-131. The mechanisms by which these complexes facilitate entry are poorly understood.
View Article and Find Full Text PDFViral glycoproteins mediate entry of enveloped viruses into cells and thus play crucial roles in infection. In herpesviruses, a complex of two viral glycoproteins, gH and gL (gH/gL), regulates membrane fusion events and influences virion cell tropism. Human cytomegalovirus (HCMV) gH/gL can be incorporated into two different protein complexes: a glycoprotein O (gO)-containing complex known as gH/gL/gO, and a complex containing UL128, UL130, and UL131 known as gH/gL/UL128-131.
View Article and Find Full Text PDFHerpesvirus glycoprotein complex gH/gL provides a core entry function through interactions with the fusion protein gB and can also influence tropism through receptor interactions. The Epstein-Barr virus gH/gL and gH/gL/gp42 serve both functions for entry into epithelial and B cells, respectively. Human cytomegalovirus (HCMV) gH/gL can be bound by the UL128-131 proteins or gO.
View Article and Find Full Text PDFCytomegalovirus infections are an important cause of disease for which no licensed vaccine exists. Recent studies have focused on the gH/gL/UL128-131 complex as antibodies to gH/gL/UL128-131 neutralize viral entry into epithelial cells. Prior studies have used cells from the retinal pigment epithelium, while to prevent transmission, vaccine-induced antibodies may need to block viral infection of epithelial cells of the oral or genital mucosa.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) produces the following two gH/gL complexes: gH/gL/gO and gH/gL/UL128-131. Entry into epithelial and endothelial cells requires gH/gL/UL128-131, and we have provided evidence that gH/gL/UL128-131 binds saturable epithelial cell receptors to mediate entry. HCMV does not require gH/gL/UL128-131 to enter fibroblasts, and laboratory adaptation to fibroblasts results in mutations in the UL128-131 genes, abolishing infection of epithelial and endothelial cells.
View Article and Find Full Text PDFHerpesviruses use a cascade of interactions with different cell surface molecules to gain entry into cells. In many cases, this involves binding to abundant glycosaminoglycans or integrins followed by interactions with more limited cell surface proteins, leading to fusion with cellular membranes. Human cytomegalovirus (HCMV) has the ability to infect a wide variety of human cell types in vivo.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2008
Human cytomegalovirus (HCMV) forms two different membrane protein complexes, gH/gL/gO and gH/gL/UL128/UL130/UL131, that function in different cell types. gH/gL/gO appears to be important for HCMV entry into or spread between fibroblasts, processes that occur at neutral pH. We demonstrated that HCMV entry into epithelial and endothelial cells requires gH/gL/UL128-131 and involves endocytosis and low pH.
View Article and Find Full Text PDFThe entry of human cytomegalovirus (HCMV) into biologically relevant epithelial and endothelial cells involves endocytosis followed by low-pH-dependent fusion. This entry pathway is facilitated by the HCMV UL128, UL130, and UL131 proteins, which form one or more complexes with the virion envelope glycoprotein gH/gL. gH/gL/UL128-131 complexes appear to be distinct from the gH/gL/gO complex, which likely facilitates entry into fibroblasts.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) replication in epithelial and endothelial cells appears to be important in virus spread, disease, and persistence. It has been difficult to study infection of these cell types because HCMV laboratory strains (e.g.
View Article and Find Full Text PDFThe Us3 protein kinase encoded by herpes simplex virus type-1 (HSV-1) suppresses apoptosis in infected cells and is sufficient to block apoptosis induced by overexpression of Bad [Proc. Natl. Acad.
View Article and Find Full Text PDFThe herpes simplex virus type 1 (HSV-1) US3 kinase is likely important for primary envelopment of progeny nucleocapsids since it localizes to the nuclear envelope of infected cells and largely determines the phosphorylation state and localization of the necessary primary envelopment factor, the UL34 protein. In HEp-2 cells, the production of infectious US3 null progeny is delayed and decreased relative to that of the parental strain, HSV-1(F). Furthermore, the US3 kinase affects the morphology of primary envelopment such that in its absence, UL34 protein-containing enveloped virions accumulate within membrane-bound vesicles.
View Article and Find Full Text PDFThe wild-type UL31, UL34, and US3 proteins localized on nuclear membranes and perinuclear virions; the US3 protein was also on cytoplasmic membranes and extranuclear virions. The UL31 and UL34 proteins were not detected in extracellular virions. US3 deletion caused (i) virion accumulation in nuclear membrane invaginations, (ii) delayed virus production onset, and (iii) reduced peak virus titers.
View Article and Find Full Text PDF