The South China Sea (SCS) is a receptor of pollution sources from various parts of Asia and is heavily impacted by strong meteorological systems, which thus dictate aerosol variability over the region. This study analyzes long-term aerosol optical properties observed at Dongsha Island (a representative site in northern SCS) from 2009 to 2021 and Taiping Island (a representative site in southern SCS) from 2012 to 2021 to better apprehend the temporal evolution of columnar aerosols over the SCS. The noticeable difference in loadings, optical properties, and compositions of aerosols between northern and southern SCS was due to the influence of dissimilar emission sources and transport mechanisms.
View Article and Find Full Text PDFWe introduce and evaluate an approach for the simultaneous retrieval of aerosol and surface properties from Airborne Visible/Infrared Imaging Spectrometer Classic (AVIRIS-C) data collected during wildfires. The joint National Aeronautics and Space Administration (NASA) National Oceanic and Atmospheric Administration Fire Influence on Regional to Global Environments and Air Quality field campaign took place in August 2019, and involved two aircraft and coordinated ground-based observations. The AVIRIS-C instrument acquired data from onboard NASA's high altitude ER-2 research aircraft, coincident in space and time with aerosol observations obtained from the Aerosol Robotic Network (AERONET) DRAGON mobile platform in the smoke plume downwind of the Williams Flats Fire in northern Washington in August 2019.
View Article and Find Full Text PDFA recently developed GRASP/Component approach (GRASP: Generalized Retrieval of Atmosphere and Surface Properties) was applied to AERONET (Aeronet Robotic Network) sun photometer measurements in this study. Unlike traditional aerosol component retrieval, this approach allows the inference of some information about aerosol composition directly from measured radiance, rather than indirectly through the inversion of optical parameters, and has been integrated into the GRASP algorithm. The newly developed GRASP/Component approach was applied to 13 AERONET sites for different aerosol types under the assumption of aerosol internal mixing rules to analyze the characteristics of aerosol components and their distribution patterns.
View Article and Find Full Text PDFAerosol is a critical trace component of the atmosphere. Many processes in the Earth's climate system are intimately related to aerosols via their direct and indirect radiative effects. Aerosol effects are not limited to these climatic aspects, however.
View Article and Find Full Text PDFExposure to ambient fine particulate matter (PM) is a leading risk factor for the global burden of disease. However, uncertainty remains about PM sources. We use a global chemical transport model (GEOS-Chem) simulation for 2014, constrained by satellite-based estimates of PM to interpret globally dispersed PM mass and composition measurements from the ground-based surface particulate matter network (SPARTAN).
View Article and Find Full Text PDFIn the present study, we evaluated the pre-monsoon urban atmosphere (UA) aerosol characteristics remotely sensed by Aerosol Robotic Network (AERONET) over the Bengal Gangetic plain (BGP) at Kolkata (KOL) and their implication in potential source types and spatiotemporal features. About 70% of the AERONET-sensed aerosol optical depth at 0.50 μ m, AOD (Angstrom exponent, α at 0.
View Article and Find Full Text PDFFor the first time, aerosol optical properties are measured over Lumbini, Nepal, with CIMEL sunphotometer of the Aerosol Robotic Network (AERONET) program. Lumbini is a sacred place as the birthplace of Lord Buddha, and thus a UNESCO world heritage site, located near the northern edge of the central Indo-Gangetic Plains (IGP) and before the Himalayan foothills (and Himalayas) to its north. Average aerosol optical depth (AOD) is found to be 0.
View Article and Find Full Text PDFAs part of the Seven Southeast Asian Studies (7SEAS) program, an Aerosol Robotic Network (AERONET) sun photometer and a Micro-Pulse Lidar Network (MPLNET) instrument have been deployed at Singapore to study the regional aerosol environment of the Maritime Continent (MC). In addition, the Navy Aerosol Analysis and Prediction System (NAAPS) is used to model aerosol transport over the region. From 24 September 2009 to 31 March 2011, the relationships between ground-, satellite- and model-based aerosol optical depth (AOD) and particulate matter with aerodynamic equivalent diameters less than 2.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2016
This study aims to investigate and establish a suitable model that can help to estimate aerosol optical depth (AOD) in order to monitor aerosol variations especially during non-retrieval time. The relationship between actual ground measurements (such as air pollution index, visibility, relative humidity, temperature, and pressure) and AOD obtained with a CIMEL sun photometer was determined through a series of statistical procedures to produce an AOD prediction model with reasonable accuracy. The AOD prediction model calibrated for each wavelength has a set of coefficients.
View Article and Find Full Text PDFIn this study, we systematically document the link between dust episodes and local scale regional aerosol optical properties over Jaipur located in the vicinity of Thar Desert in the northwestern state of Rajasthan. The seasonal variation of AOT(500 nm) (aerosol optical thickness) shows high values (0.51 ± 0.
View Article and Find Full Text PDFWe describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFS and MODIS sensors, including aerosol optical thickness (τ), angstrom coefficient (α), and water-leaving radiance (L(w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity.
View Article and Find Full Text PDFAERONET, a network of well calibrated sunphotometers, provides data on aerosol optical depth and absorption optical depth at >250 sites around the world. The spectral range of AERONET allows discrimination between constituents that absorb most strongly in the UV region, such as soil dust and organic carbon, and the more ubiquitously absorbing black carbon (BC). AERONET locations, primarily continental, are not representative of the global mean, but they can be used to calibrate global aerosol climatologies produced by tracer transport models.
View Article and Find Full Text PDF