Publications by authors named "Brent Harker"

Article Synopsis
  • FFPE tissues are useful for identifying biomarkers due to their availability, but their RNA quality can be poor; this study aimed to find which FFPE samples yield usable RNA for sequencing.
  • The researchers optimized RNA library preparation methods and tested them on various FFPE and fresh frozen samples, eventually developing a decision tree model to predict which samples would pass quality control based on input RNA metrics.
  • It was found that samples with lower RNA concentrations and fewer detectable genes were more likely to fail quality control, leading to a recommendation of at least 25 ng/µl RNA concentration for successful library preparation.
View Article and Find Full Text PDF

Comparing genomes of closely related genotypes from populations with distinct demographic histories can help reveal the impact of effective population size on genome evolution. For this purpose, we present a high quality genome assembly of (PA42), and compare this with the first sequenced genome of this species (TCO), which was derived from an isolate from a population with >90% reduction in nucleotide diversity. PA42 has numerous similarities to TCO at the gene level, with an average amino acid sequence identity of 98.

View Article and Find Full Text PDF

Leishmania major-infected human dendritic cells (DCs) exhibit a marked induction of IL-12, ultimately promoting a robust Th1-mediated response associated with parasite killing and protective immunity. The host cell transcription machinery associated with the specific IL-12 induction observed during L. major infection remains to be thoroughly elucidated.

View Article and Find Full Text PDF

The mosquito Aedes aegypti is the principal vector that transmits dengue virus (DENV) to humans. The primary factors that trigger a susceptible or refractory interaction of A. aegypti with DENV are not well understood.

View Article and Find Full Text PDF

Background: Aedes aegypti is the most important global vector of dengue virus infection in humans. Availability of the draft genome sequence of this mosquito provides unique opportunities to study different aspects of its biology, including identification of genes and pathways relevant to the developmental processes associated with transition across individual life stages. However, detailed knowledge of gene expression patterns pertaining to developmental stages of A.

View Article and Find Full Text PDF

Background: Aedes aegypti is the primary mosquito vector for dengue virus (DENV) worldwide. Infectivity of dengue virus varies among natural populations of this mosquito. How A.

View Article and Find Full Text PDF

Background: The mosquito Aedes aegypti is the primary vector of dengue virus (DENV) infection in humans, and DENV is the most important arbovirus across most of the subtropics and tropics worldwide. The early time periods after infection with DENV define critical cellular processes that determine ultimate success or failure of the virus to establish infection in the mosquito.

Methods And Results: To identify genes involved in these processes, we performed genome-wide transcriptome profiling between susceptible and refractory A.

View Article and Find Full Text PDF

Background: Microsatellite markers have proven useful in genetic studies in many organisms, yet microsatellite-based studies of the dengue and yellow fever vector mosquito Aedes aegypti have been limited by the number of assayable and polymorphic loci available, despite multiple independent efforts to identify them. Here we present strategies for efficient identification and development of useful microsatellites with broad coverage across the Aedes aegypti genome, development of multiplex-ready PCR groups of microsatellite loci, and validation of their utility for population analysis with field collections from Haiti.

Results: From 79 putative microsatellite loci representing 31 motifs identified in 42 whole genome sequence supercontig assemblies in the Aedes aegypti genome, 33 microsatellites providing genome-wide coverage amplified as single copy sequences in four lab strains, with a range of 2-6 alleles per locus.

View Article and Find Full Text PDF

Background: Anopheles funestus is a principal vector of malaria across much of tropical Africa and is considered one of the most efficient of its kind, yet studies of this species have lagged behind those of its broadly sympatric congener, An. gambiae. In aid of future genomic sequencing of An.

View Article and Find Full Text PDF

The development and critical evaluation of new technologies for identifying genetic polymorphisms will rapidly accelerate the discovery and diagnosis of disease-related genes. We report a novel way for distinguishing a new class of human DNA polymorphisms, short insertion/deletion polymorphisms (indels). A sensor with cylindrical pores named channel glass in combination with tandem hybridization, which uses a 5'-fluorescent labeled stacking probe and microarray-based short allele-specific oligonucleotide (capture probe) was investigated.

View Article and Find Full Text PDF

Two different solid supports, channel glass and flat glass, were compared for their affect on the sensitivity and efficiency of DNA hybridization reactions. Both solid supports were tested using a set of arrayed, synthetic oligonucleotides that are designed to detect short insertion/deletion polymorphisms (SIDPs). A total of 13 different human SIDPs were chosen for analysis.

View Article and Find Full Text PDF

DNA microarray is a powerful tool in biomedical research. However, transcriptomic profiling using DNA microarray is subject to many variations including biological variability. To evaluate the different sources of variation in mRNA gene expression profiles, gene expression profiles were monitored using the Affymetrix RatTox U34 arrays in cultured primary hepatocytes derived from six rats over a 26 hour period at 6 time points (0 h, 2h, 5h, 8h, 14 h and 26 h) with two replicate arrays at each time point for each animal.

View Article and Find Full Text PDF

Background: Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution.

Results: In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points.

View Article and Find Full Text PDF