Publications by authors named "Brent H Cochran"

Glioblastoma multiforme (GBM) is the most common type of primary malignant brain cancer and has a very poor prognosis. A subpopulation of cells known as GBM stem-like cells (GBM-SC) have the capacity to initiate and sustain tumor growth and possess molecular characteristics similar to the parental tumor. GBM-SCs are known to be enriched in hypoxic niches and may contribute to therapeutic resistance.

View Article and Find Full Text PDF

The growth factor and cytokine regulated transcription factor STAT3 is required for the self-renewal of several stem cell types including tumor stem cells from glioblastoma. Here we show that STAT3 inhibition leads to the upregulation of the histone H3K27me2/3 demethylase Jmjd3 (KDM6B), which can reverse polycomb complex-mediated repression of tissue specific genes. STAT3 binds to the Jmjd3 promoter, suggesting that Jmjd3 is a direct target of STAT3.

View Article and Find Full Text PDF

Glioblastoma patients have a poor prognosis, even after surgery, radiotherapy, and chemotherapy with temozolomide or 1,3-bis(2-chloroethy)-1-nitrosourea. We developed an in vitro recovery model using neurosphere cultures to analyze the efficacy of chemotherapy treatments, and tested whether glioblastoma neurosphere-initiating cells are resistant. Concentrations of chemotherapy drugs that inhibit neurosphere formation are similar to clinically relevant doses.

View Article and Find Full Text PDF

Loss-of-function genetic screens in model organisms have elucidated numerous biological processes, but the diploid genome of mammalian cells has precluded large-scale gene disruption. We used insertional mutagenesis to develop a screening method to generate null alleles in a human cell line haploid for all chromosomes except chromosome 8. Using this approach, we identified host factors essential for infection with influenza and genes encoding important elements of the biosynthetic pathway of diphthamide, which are required for the cytotoxic effects of diphtheria toxin and exotoxin A.

View Article and Find Full Text PDF

Signal transducer and activator of transcription 3 (STAT3) regulates diverse cellular processes, including cell growth, differentiation, and apoptosis, and is frequently activated during tumorigenesis. Recently, putative glioblastoma stem cells (GBM-SCs) were isolated and characterized. These cells can self-renew indefinitely in culture, are highly tumorigenic, and retain the ability to differentiate in culture.

View Article and Find Full Text PDF

The signal transducers and activators of transcription (STAT) family of transcription factors regulates a variety of biological functions including cellular proliferation, transformation, apoptosis, and differentiation. We have previously determined that PDGF activates the STAT pathway in human airway smooth muscle cells (HASMC) and that the Jak and Src kinases are required for both PDGF-induced STAT activation and HASMC proliferation. As increased airway smooth muscle (ASM) volume is associated with airflow obstruction and disease severity in patients with asthma, it is important to elucidate the cellular and molecular pathways that regulate ASM accumulation.

View Article and Find Full Text PDF

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that plays a critical role in cytokine and growth factor signaling and is frequently activated in human tumors. Human telomerase reverse transcriptase (hTERT) is also often overexpressed in tumor cells and mediates cellular immortalization. Here we report that STAT3 directly regulates the expression of hTERT in a variety of human cancer cells.

View Article and Find Full Text PDF

Serotonin (5-HT) stimulates superoxide release, phosphorylation of p42/p44 mitogen-activated protein kinase (MAPK), and DNA synthesis in bovine pulmonary artery smooth muscle cells. Both p42/p44 MAPK and reactive oxygen species (ROS) generation are required for 5-HT-induced growth in SMC. Agents that block the production of ROS, or ROS scavengers, block MAPK activation by 5-HT.

View Article and Find Full Text PDF

The cascade of cellular and molecular pathways mediating acute lung injury is complex and incompletely defined. Although the Src and Jak family of kinases is upregulated in LPS-induced murine lung injury, their role in the development of lung injury is unknown. Here we report that systemic inhibition of these kinases using specific small molecule inhibitors (PP2, SU6656, tyrphostin A1) significantly attenuated LPS-induced lung injury, as determined by histologic and capillary permeability assays.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a devastating clinical problem with a mortality as high as 60%. It is now appreciated that ALI represents a cytokine excess state that involves the microvasculature of multiple organs. The signal transducers and activators of transcription (STAT) family of transcription factors activate critical mediators of cytokine responses, but there is limited knowledge about their role in mediating ALI.

View Article and Find Full Text PDF

Background: Astrocytomas are the most common type of primary central nervous system tumors. They are frequently associated with genetic mutations that deregulate cell cycle and render these tumors resistant to apoptosis. STAT3, signal transducer and activator of transcription 3, participates in several human cancers by inducing cell proliferation and inhibiting apoptosis and is frequently activated in astrocytomas.

View Article and Find Full Text PDF

Shiga toxins made by Shiga toxin-producing Escherichia coli (STEC) are associated with hemolytic uremic syndrome. Shiga toxins (Stxs) may access the host systemic circulation by absorption across the intestinal epithelium. The effects of Stxs on this cell layer are not completely understood, although animal models of STEC infection suggest that, in the gut, Stxs may participate in both immune activation and apoptosis.

View Article and Find Full Text PDF

Airway remodeling, as manifested by an increase in airway smooth muscle mass, mucous gland hyperplasia, and subepithelial fibrosis, contributes to the airway hyperresponsiveness and fixed obstruction seen in some asthmatic patients. Here we investigated whether the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway contributes to platelet-derived growth factor (PDGF)-stimulated mitogenesis of human airway smooth muscle cells (HASMC). PDGF treatment of quiescent HASMC resulted in the rapid tyrosine phosphorylation and DNA binding of STAT1 and STAT3.

View Article and Find Full Text PDF