Publications by authors named "Brent Covele"

Purpose: Currently, there is a lack of patient-specific tools to guide brachytherapy planning and applicator choice for cervical cancer. The purpose of this study is to evaluate the accuracy of organ-at-risk (OAR) dose predictions using knowledge-based intracavitary models, and the use of these models and clinical data to determine the dosimetric differences of tandem-and-ring (T&R) and tandem-and-ovoids (T&O) applicators.

Materials And Methods: Knowledge-based models, which predict organ D, were trained on 77/75 cases and validated on 32/38 for T&R/T&O applicators.

View Article and Find Full Text PDF

The adoption of knowledge-based dose-volume histogram (DVH) prediction models for assessing organ-at-risk (OAR) sparing in radiotherapy necessitates quantification of prediction accuracy and uncertainty. Moreover, DVH prediction error bands should be readily interpretable as confidence intervals in which to find a percentage of clinically acceptable DVHs. In the event such DVH error bands are not available, we present an independent error quantification methodology using a local reference cohort of high-quality treatment plans, and apply it to two DVH prediction models, ORBIT-RT and RapidPlan, trained on the same set of 90 volumetric modulated arc therapy (VMAT) plans.

View Article and Find Full Text PDF

Purpose: Access to knowledge-based treatment plan quality control has been hindered by the complexity of developing models and integration with different treatment planning systems (TPS). Online Real-time Benchmarking Information Technology for RadioTherapy (ORBIT-RT) provides a free, web-based platform for knowledge-based dose estimation that can be used by clinicians worldwide to benchmark the quality of their radiotherapy plans.

Materials And Methods: The ORBIT-RT platform was developed to satisfy four primary design criteria: web-based access, TPS independence, Health Insurance Portability and Accountability Act compliance, and autonomous operation.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to explore knowledge-based organ-at-risk dose estimation for intracavitary brachytherapy planning for cervical cancer. Using established external-beam knowledge-based dose-volume histogram (DVH) estimation methods, we sought to predict bladder, rectum, and sigmoid D for tandem and ovoid treatments.

Methods And Materials: A total of 136 patients with loco-regionally advanced cervical cancer treated with 456 (356:100 training:validation ratio) CT-based tandem and ovoid brachytherapy fractions were analyzed.

View Article and Find Full Text PDF